Безопасность облачных вычислений: есть вопросы? Cloud Hacking: облачные вычисления на службе у пентестера

Наибольшую обеспокоенность у компаний вызывает защита внешних облачных услуг. Так, респонденты переживают, что инциденты могут произойти у поставщиков, на аутсорсинг которым переданы бизнес-процессы , у сторонних облачных сервисов или в ИТ-инфраструктуре , где компания арендует вычислительные мощности. Однако несмотря на все это беспокойство, проверки соблюдения требований к обеспечению безопасности третьих сторон проводят лишь 15% компаний.

«Несмотря на то что последние масштабные взломы происходили внутри ЦОД , традиционные системы безопасности по-прежнему фокусируются лишь на защите сетевого периметра и контроле прав доступа. При этом редко учитывается негативное влияние решений для защиты физической инфраструктуры на производительность виртуальных сред, - объяснил Вениамин Левцов , вице-президент по корпоративным продажам и развитию бизнеса «Лаборатории Касперского». - Поэтому в конвергентных средах так важно использовать соответствующую комплексную защиту, обеспечивая безопасность виртуальных систем специально предназначенными решениями. Мы реализуем подход, при котором вне зависимости от типа инфраструктуры для всех систем обеспечивается единое по степени защищенности покрытие всей корпоративной сети. И в этом наши технологии и современные разработки VMware (как, например, микросегментация) прекрасно дополняют друг друга».

2014: данные Ponemon и SafeNet

Большинство ИТ-организаций находятся в неведении относительно того, каким образом осуществляется защита корпоративных данных в облаке – в результате компании подвергают рискам учетные записи и конфиденциальную информацию своих пользователей. Таков лишь один из выводов недавнего исследования осени 2014 года, проведённого институтом Ponemon по заказу SafeNet . В рамках исследования, озаглавленного "Проблемы управления информацией в облаке: глобальное исследование безопасности данных", во всём мире было опрошено более 1800 специалистов по информационным технологиям и ИТ-безопасности.

В числе прочих выводов, исследование показало, что хотя организации всё активнее используют возможности облачных вычислений, ИТ-подразделения корпораций сталкиваются с проблемами при управлении данными и обеспечении их безопасности в облаке. Опрос показал, что лишь в 38% организаций четко определены роли и ответственности за обеспечение защиты конфиденциальной и другой чувствительной информации в облаке. Усугубляет ситуацию то, что 44% корпоративных данных, хранящихся в облачном окружении, неподконтрольны ИТ-подразделениям и не управляются ими. К тому же более двух третей (71%) респондентов отметили, что сталкиваются с всё новыми сложностями при использовании традиционных механизмов и методик обеспечения безопасности для защиты конфиденциальных данных в облаке.

С ростом популярности облачных инфраструктур повышаются и риски утечек конфиденциальных данных Около двух третей опрошенных ИТ-специалистов (71%) подтвердили, что облачные вычисления сегодня имеют большое значение для корпораций, и более двух третей (78%) считают, что актуальность облачных вычислений сохранится и через два года. Кроме того, по оценкам респондентов около 33% всех потребностей их организаций в информационных технологиях и инфраструктуре обработки данных сегодня можно удовлетворить с помощью облачных ресурсов, а в течение следующих двух лет эта доля увеличится в среднем до 41%.

Однако большинство опрошенных (70%) соглашается, что соблюдать требования по сохранению конфиденциальности данных и их защите в облачном окружении становится всё сложнее. Кроме того, респонденты отмечают, что риску утечек более всего подвержены такие виды хранящихся в облаке корпоративных данных как адреса электронной почты, данные о потребителях и заказчиках и платежная информация.

В среднем, внедрение более половины всех облачных сервисов на предприятиях осуществляется силами сторонних департаментов, а не корпоративными ИТ-отделами, и в среднем около 44% корпоративных данных, размещенных в облаке, не контролируется и не управляется ИТ-подразделениями. В результате этого, только 19% опрошенных могли заявить о своей уверенности в том, что знают обо всех облачных приложениях, платформах или инфраструктурных сервисах, используемых в настоящий момент в их организациях.

Наряду с отсутствием контроля за установкой и использованием облачных сервисов, среди опрошенных отсутствовало единое мнение относительно того, кто же на самом деле отвечает за безопасность данных, хранящихся в облаке. Тридцать пять процентов респондентов заявили, что ответственность разделяется между пользователями и поставщиками облачных сервисов, 33% считают, что ответственность целиком лежит на пользователях, и 32% считают, что за сохранность данных отвечает поставщик сервисов облачных вычислений.

Более двух третей (71%) респондентов отметили, что защищать конфиденциальные данные пользователей, хранящиеся в облаке, с помощью традиционных средств и методов обеспечения безопасности становится всё сложнее, и около половины (48%) отмечают, что им становится всё сложнее контролировать или ограничивать для конечных пользователей доступ к облачным данным. В итоге более трети (34%) опрошенных ИТ-специалистов заявили, что в их организациях уже внедрены корпоративные политики, требующие в качестве обязательного условия для работы с определёнными сервисами облачных вычислений применения таких механизмов обеспечения безопасности как шифрование. Семьдесят один (71) процент опрошенных отметили что возможность шифрования или токенизации конфиденциальных или иных чувствительных данных имеет для них большое значение, и 79% считают, что значимость этих технологий в течение ближайших двух лет будет повышаться.

Отвечая на вопрос, что именно предпринимается в их компаниях для защиты данных в облаке, 43% респондентов сказали, что в их организациях для передачи данных используются частные сети. Примерно две пятых (39%) респондентов сказали, что в их компаниях для защиты данных в облаке применяется шифрование, токенизация и иные криптографические средства. Еще 33% опрошенных не знают, какие решения для обеспечения безопасности внедрены в их организациях, и 29% сказали, что используют платные сервисы безопасности, предоставляемые их поставщиками услуг облачных вычислений.

Респонденты также считают, что управление корпоративными ключами шифрования имеет важное значение для обеспечения безопасности данных в облаке, учитывая возрастающее количество платформ для управления ключами и шифрования, используемых в их компаниях. В частности, 54% респондентов сказали, что их организации сохраняют контроль над ключами шифрования при хранении данных в облаке. Однако 45% опрошенных сказали, что хранят свои ключи шифрования в программном виде, там же, где хранятся и сами данные, и только 27% хранят ключи в более защищенных окружениях, например, на аппаратных устройствах.

Что касается доступа к данным, хранящимся в облаке, то шестьдесят восемь (68) процентов респондентов утверждают, что управлять учетными записями пользователей в условиях облачной инфраструктуры становится сложнее, при этом шестьдесят два (62) процента респондентов сказали, что их в организациях доступ к облаку предусмотрен и для третьих лиц. Примерно половина (46 процентов) опрошенных сказали, что в их компаниях используется многофакторная аутентификация для защиты доступа сторонних лиц к данным, хранящимся в облачном окружении. Примерно столько же (48 процентов) респондентов сказали, что в их компаниях применяются технологии многофакторной аутентификации в том числе и для защиты доступа своих сотрудников к облаку.

Почему заказчики недовольны поставщиками облака?

Непрозрачное облако

Опубликованное недавно исследование Forrester Consulting показывает: многие организации считают, что поставщики облачных услуг предоставляют им недостаточно информации о взаимодействии с облаком, и это вредит их бизнесу.

Помимо недостаточной прозрачности, есть и другие факторы, уменьшающие энтузиазм перехода в облако: это уровень сервиса для заказчиков, дополнительные расходы и адаптация при миграции (on-boarding). Организации очень любят облако, но не его поставщиков - во всяком случае, не столь же сильно.

Исследование было заказано компанией iland, поставщиком корпоративного облачного хостинга, проводилось в течение мая и охватывало профессионалов в области инфраструктуры и текущего сопровождения из 275 организаций в , и Сингапуре.

«Среди всех сложностей сегодняшнего облака кроются и досадные изъяны, - пишет Лайлак Шёнбек (Lilac Schoenbeck), вице-президент по сопровождению и маркетингу продукта iland. - Столь важные метаданные не сообщаются, существенно тормозя принятие облака, и всё же организации строят планы роста исходя из допущения безграничности облачных ресурсов».

Где же ключ к достижению гармонии деловых отношений? Вот что нужно знать VAR’ам, чтобы постараться уладить проблемы и привести стороны к примирению.

Невнимание к клиентам

Судя по всему, многие пользователи облака не ощущают тот самый индивидуальный подход.

Так, 44% респондентов ответили, что их провайдер не знает их компанию и не понимает их деловые потребности, а 43% считают, что если бы их организация просто была крупнее, то, наверно, поставщик уделял бы им больше внимания. Короче говоря, они чувствуют холод рядовой сделки, покупая облачные услуги, и им это не нравится.

И еще: есть одна практика, на которую указала треть опрошенных компаний, также вселяющая ощущение мелочности в сделке, - с них взимают плату за малейший вопрос или непонятность.

Слишком много секретов

Нежелание поставщика предоставлять всю информацию не только раздражает заказчиков, но часто стоит им денег.

Все респонденты, принявшие участие в опросе Forrester, ответили, что ощущают определенные финансовые последствия и влияние на текущую работу из-за отсутствующих или закрытых данных об использовании ими облака.

«Отсутствие ясных данных о параметрах использования облака приводит к проблемам производительности, затруднениям отчетности перед руководством о реальной стоимости использования, оплате за ресурсы, так и не потребленные пользователями, и непредвиденным счетам», - констатирует Forrester.

А где метаданные?

ИТ-руководители, ответственные за облачную инфраструктуру в своих организациях, хотят иметь метрику стоимости и рабочих параметров, обеспечивающую ясность и прозрачность, но, очевидно, им трудно донести это до поставщиков.

Участники опроса отметили, что получаемые ими метаданные об облачных рабочих нагрузках обычно бывают неполными. Почти половина компаний ответила, что данные о соблюдении регулятивных норм отсутствуют, 44% указали на отсутствие данных о параметрах использования, 43% - ретроспективных данных, 39% - данных по безопасности, и 33% - данных биллинга и стоимости.

Вопрос прозрачности

Отсутствие метаданных вызывает всякого рода проблемы, говорят респонденты. Почти две трети опрошенных сообщили, что недостаточная прозрачность не позволяет им в полной мере понять все преимущества облака.

«Отсутствие прозрачности порождает различные проблемы, и в первую очередь это вопрос о параметрах использования и перебои в работе», - говорится в отчете.

Примерно 40% пытаются устранить эти пробелы сами, закупая дополнительный инструментарий у своих же поставщиков облака, а другие 40% просто закупают услуги другого поставщика, где такая прозрачность присутствует.

Соблюдение регулятивных норм

Как ни крути, организации несут ответственность за все свои данные, будь то на локальных СХД или отправленные в облако.

Более 70% респондентов в исследовании ответили, что в их организациях регулярно проводится аудит, и они должны подтвердить соответствие существующим нормам, где бы ни находились их данные. И это ставит препятствие на пути принятия облака почти для половины опрошенных компаний.

«Но аспект соблюдения вами регулятивных норм должен быть прозрачен для ваших конечных пользователей. Когда поставщики облака придерживают или не раскрывают эту информацию, они не позволяют вам достичь этого», - сказано в отчете.

Проблемы соответствия

Более 60% опрошенных компаний ответили, что проблемы соблюдения регулятивных требований ограничивают дальнейшее принятие облака.

Главные проблемы таковы:

  • 55% компаний, связанных такими требованиями, ответили, что труднее всего для них реализовать надлежащие средства контроля.
  • Примерно половина говорит, что им трудно понять уровень соответствия требованиям, обеспечиваемый их поставщиком облака.
  • Еще половина респондентов ответила, что им трудно получить необходимую документацию от провайдера о соблюдении этих требований, чтобы пройти аудит. И 42% затрудняются получить документацию о соблюдении ими самими требований в отношении рабочих нагрузок, запущенных в облаке.

Проблемы миграции

Похоже, что процесс перехода (on-boarding) - еще одна область общей неудовлетворенности: чуть более половины опрошенных компаний ответили, что их не удовлетворяют процессы миграции и поддержки, которые предложили им поставщики облака.

Из 51% неудовлетворенных процессом миграции 26% ответили, что это заняло слишком много времени, и 21% пожаловались на отсутствие живого участия со стороны персонала провайдера.

Более половины были также не удовлетворены процессом поддержки: 22% указали на долгое ожидание ответа, 20% - недостаточные знания персонала поддержки, 19% - на затянувшийся процесс решения проблем, и 18% получили счета с более высокой, чем ожидалось, стоимостью поддержки.

Препятствия на пути в облако

Многие из компаний, опрошенных фирмой Forrester, вынуждены сдерживать свои планы расширения в облаке из-за проблем, которые они испытывают с уже имеющимися услугами.

Центр обработки данных (ЦОД) представляет собой совокупность серверов, размещенных на одной площадке с целью повышения эффективности и защищенности. Защита центров обработки данных представляет собой сетевую и физическую защиту, а также отказоустойчивость и надежное электропитание. В настоящее время на рынке представлен широкий спектр решений для защиты серверов и ЦОД от различных угроз. Их объединяет ориентированность на узкий спектр решаемых задач . Однако спектр этих задач подвергся некоторому расширению вследствии постепенного вытеснения классических аппаратных систем виртуальными платформами. К известным типам угроз (сетевые атаки, уязвимости в приложениях операционных систем, вредоносное программное обеспечение) добавились сложности, связанные с контролем среды (гипервизора), трафика между гостевыми машинами и разграничением прав доступа. Расширились внутренние вопросы и политики защиты ЦОД, требования внешних регуляторов. Работа современных ЦОД в ряде отраслей требует закрытия технических вопросов, а также вопросов связанных с их безопасностью. Финансовые институты (банки, процессинговые центры) подчинены ряду стандартов, выполнение которых заложено на уровне технических решений. Проникновение платформ виртуализации достигло того уровня, когда практически все компании, использующие эти системы, весьма серьезно занялись вопросами усиления безопасности в них. Отметим, что буквально год назад интерес был скорее теоретический .
В современных условиях становится все сложнее обеспечить защиту критически важных для бизнеса систем и приложений.
Появление виртуализации стало актуальной причиной масштабной миграции большинства систем на ВМ, однако решение задач обеспечения безопасности, связанных с эксплуатацией приложений в новой среде, требует особого подхода. Многие типы угроз достаточно изучены и для них разработаны средства защиты, однако их еще нужно адаптировать для использования в облаке.

Cуществующие угрозы облачных вычислений
Контроль и управление облаками - является проблемой безопасности. Гарантий, что все ресурсы облака посчитаны и в нем нет неконтролируемых виртуальных машин, не запущено лишних процессов и не нарушена взаимная конфигурация элементов облака нет. Это высокоуровневый тип угроз, т.к. он связан с управляемостью облаком, как единой информационной системой и для него общую защиту нужно строить индивидуально. Для этого необходимо использовать модель управления рисками для облачных инфраструктур.

В основе обеспечения физической безопасности лежит строгий контроль физического доступа к серверам и сетевой инфраструктуре. В отличии от физической безопасности, сетевая безопасность в первую очередь представляет собой построение надежной модели угроз, включающей в себя защиту от вторжений и межсетевой экран. Использование межсетевого экрана подразумевает работу фильтра, с целью разграничить внутренние сети ЦОД на подсети с разным уровнем доверия. Это могут быть отдельно серверы, доступные из Интернета или серверы из внутренних сетей.
В облачных вычислениях важнейшую роль платформы выполняет технология виртуализации. Для сохранения целостности данных и обеспечения защиты рассмотрим основные известные угрозы для облачных вычислений.

1. Трудности при перемещении обычных серверов в вычислительное облако
Требования к безопасности облачных вычислений не отличаются от требований безопасности к центрам обработки данных. Однако, виртуализация ЦОД и переход к облачным средам приводят к появлению новых угроз.
Доступ через Интернет к управлению вычислительной мощностью один из ключевых характеристик облачных вычислений. В большинстве традиционных ЦОД доступ инженеров к серверам контролируется на физическом уровне, в облачных средах они работают через Интернет. Разграничение контроля доступа и обеспечение прозрачности изменений на системном уровне является одним из главных критериев защиты.
2. Динамичность виртуальных машин
Виртуальные машины динамичны. Создать новую машину, остановить ее работу, запустить заново можно сделать за короткое время. Они клонируются и могут быть перемещены между физическими серверами. Данная изменчивость трудно влияет на разработку целостности системы безопасности. Однако, уязвимости операционой системы или приложений в виртуальной среде распространяются бесконтрольно и часто проявляются после произвольного промежутка времени (например, при восстановлении из резервной копии). В средах облачных вычислениях важно надежно зафиксировать состояние защиты системы, при этом это не должно зависить от ее состояния и местоположения.
3. Уязвимости внутри виртуальной среды
Серверы облачных вычислений и локальные серверы используют одни и те же операционные системы и приложения. Для облачных систем угроза удаленного взлома или заражения вредоносным ПО высока. Риск для виртуальных систем также высок. Параллельные виртуальные машины увеличивает «атакуемую поверхность». Система обнаружения и предотвращения вторжений должна быть способна обнаруживать вредоносную активность на уровне виртуальных машин, вне зависимости от их расположения в облачной среде.
4. Защита бездействующих виртуальных машин
Когда виртуальная машина выключена, она подвергается опасности заражения. Доступа к хранилищу образов виртуальных машин через сеть достаточно. На выключенной виртуальной машине абсолютно невозможно запустить защитное программное обеспечение. В данном случаи дожна быть реализована защита не только внутри каждой виртуальной машины, но и на уровне гипервизора.
5. Защита периметра и разграничение сети
При использовании облачных вычислений периметр сети размывается или исчезает. Это приводит к тому, что защита менее защищенной части сети определяет общий уровень защищенности. Для разграничения сегментов с разными уровнями доверия в облаке виртуальные машины должны сами обеспечивать себя защитой, перемещая сетевой периметр к самой виртуальной машине (Рис 1.). Корпоративный firewall - основной компонент для внедрения политики IT безопасности и разграничения сегментов сети, не в состоянии повлиять на серверы, размещенные в облачных средах.
Атаки на облака и решения по их устранению
1. Традиционные атаки на ПО
Уязвимости операционных систем, модульных компонентов, сетевых протоколов и др - традиционные угрозы, для защиты от которых достаточно установить межстевой экран, firewall, антивирус, IPS и другие компоненты, решающие данную проблему. При этом важно, чтобы данные средства защиты эффективно работали в условиях виртуализации.
2. Функциональные атаки на элементы облака
Этот тип атак связан с многослойностью облака, общим принципом безопасности. В статье об опасности облаков было предложено следующее решение : Для защиты от функциональных атак для каждой части облака необходимо использовать следующие средства защиты: для прокси – эффективную защиту от DoS-атак, для веб-сервера - контроль целостности страниц, для сервера приложений - экран уровня приложений, для СУБД - защиту от SQL-инъекций, для системы хранения данных – правильные бэкапы (резервное копирование), разграничение доступа. В отдельности каждые из этих защитных механизмов уже созданы, но они не собраны вместе для комплексной защиты облака, поэтому задачу по интеграции их в единую систему нужно решать во время создания облака.
3. Атаки на клиента
Большинство пользователей подключаются к облаку, используя браузер. Здесь рассматриваются такие атаки, как Cross Site Scripting, «угон» паролей, перехваты веб-сессий, «человек посредине» и многие другие. Единственная защита от данного вида атак является правильная аутентификация и использование шифрованного соединения (SSL) с взаимной аутентификацией . Однако, данные средства защиты не очень удобны и очень расточительны для создателей облаков. В этой отрасли информационной безопасности есть еще множество нерешенных задач.
4. Атаки на гипервизор
Гипервизор является одним из ключевых элементов виртуальной системы. Основной его функцией является разделение ресурсов между виртуальными машинами. Атака на гипервизор может привести к тому, что одна виртуальная машина сможет получить доступ к памяти и ресурсам другой. Также она сможет перехватывать сетевой трафик, отбирать физические ресурсы и даже вытеснить виртуальную машину с сервера. В качестве стандартных методов защиты рекомендуется применять специализированные продукты для виртуальных сред, интеграцию хост-серверов со службой каталога Active Directory, использование политик сложности и устаревания паролей, а также стандартизацию процедур доступа к управляющим средствам хост-сервера, применять встроенный брандмауэр хоста виртуализации. Также возможно отключение таких часто неиспользуемых служб как, например, веб-доступ к серверу виртуализации.
5. Атаки на системы управления
Большое количество виртуальных машин, используемых в облаках требует наличие систем управления, способных надежно контролировать создание, перенос и утилизацию виртуальных машин. Вмешательство в систему управления может привести к появлению виртуальных машин - невидимок, способных блокировать одни виртуальные машины и подставлять другие.
Решения по защите от угроз безопасности от компании Cloud Security Alliance (CSA)
Наиболее эффективные способы защиты в области безопасности облаков опубликовала организация Cloud Security Alliance (CSA) . Проанализировав опубликованную компанией информацию, были предложены следующие решения .
1. Сохранность данных. Шифрование
Шифрование – один из самых эффективных способов защиты данных. Провайдер, предоставляющий доступ к данным должен шифровать информацию клиента, хранящуюся в ЦОД, а также в случаи отсутствия необходимости, безвозвратно удалять.
2. Защита данных при передаче
Зашифрованные данные при передаче должны быть доступны только после аутентификации. Данные не получится прочитать или сделать изменения, даже в случаи доступа через ненадежные узлы. Такие технологии достаточно известны, алгоритмы и надежные протоколы AES, TLS, IPsec давно используются провайдерами.
3. Аутентификация
Аутентификации - защита паролем. Для обеспечения более высокой надежности, часто прибегают к таким средствам, как токены и сертификаты. Для прозрачного взаимодействия провайдера с системой индетификациии при авторизации, также рекомендуется использовать LDAP (Lightweight Directory Access Protocol) и SAML (Security Assertion Markup Language).
4. Изоляция пользователей
Использование индивидуальной виртуальной машины и виртуальную сеть. Виртуальные сети должны быть развернуты с применением таких технологий, как VPN (Virtual Private Network), VLAN (Virtual Local Area Network) и VPLS (Virtual Private LAN Service). Часто провайдеры изолируют данные пользователей друг от друга за счет изменения данных кода в единой программной среде. Данный подход имеет риски, связанные с опасностью найти дыру в нестандартном коде, позволяющему получить доступ к данным. В случаи возможной ошибки в коде пользователь может получить данные другого. В последнее время такие инциденты часто имели место.
Заключение
Описанные решения по защите от угроз безопасности облачных вычислений неоднократно были применены системными интеграторами в проектах построения частных облаков. После применения данных решений количество случившихся инцидентов существенно снизилось. Но многие проблемы, связанные с защитой виртуализации до сих требуют тщательного анализа и проработанного решения. Более детально рассмотрим их в следующей статье.

Шишкин В.М.

Аннотация

В статье анализируется ситуация, которая складывается в настоящее время в связи с интенсивным распространением так называемых «облачных» услуг. Отмечается недостаточная исследованность и противоречивый характер понимания безопасности в «облаке», указывается на обеспечение доверия как основного условия успешного использования данной технологии. Рассматриваются возможности применения авторской методики и программных средств, ориентированных на риск-анализ сложных, не достаточно определённых объектов для исследования безопасности облачных вычислений.

The situation developing now in connection with intensive expansion of so-called cloud services is analyzed in the paper. Insufficient study and discrepancy of understanding of security in «cloud» is marked and it is underlined trust maintenance as basic condition for successful use of these technologies. The paper considers the possibilities of the author’s technique and software oriented to risk analysis of complex objects which are not certain enough for the cloud computing security research.

Введение

Под облачными вычислениями (cloud computing) понимаются технологии обработки данных, в которых ресурсы (память, процессор, дисковое пространство и пр.) предоставляются пользователю как интернет-сервисы. Пользователь получает доступ к своим данным, при этом вся забота об обслуживании инфраструктуры полностью ложится на поставщика услуг. Термин «облако» выступает в качестве метафоры, которая основывается на изображении интернета на диаграммах компьютерных сетей. В 2008 году IEEE опубликовал документ, в котором определил облачную обработку данных как «парадигму, в рамках которой информация постоянно хранится на внешних серверах и временно кэшируется на клиентской стороне» .

«Облачные» услуги сравнительно новый, активно развивающийся сектор ИТ-услуг, но не следует считать применяемые в них технологии революционными, это лишь новая методика доставки услуг. Они представляют очередной и не последний этап давно обозначившейся объективно обусловленной тенденции на распределённое хранение и обработку, виртуализацию ресурсов и отчуждение конечного пользователя от непосредственного управления ими. Существенная их новизна проявляется,

пожалуй, в организационном отношении. В отличие от предшествующих технологий, «облачные» услуги зародились прежде всего как коммерческий проект. Соответственно, предоставляются они преимущественно на коммерческой основе, что создаёт дополнительные сложности для анализа их применения, во всяком случае, получить систематические объективные данные по их безопасности из литературных источников пока затруднительно.

Исходя из собственного опыта, присоединимся к мнению автора : «Сегодня говорить о безопасности облачных вычислений довольно сложно». Разумеется, существуют некоторые руководства по безопасности, выработанные, например, усилиями Cloud Security Alliance (CSA), тем не менее следует признать, что технический стандарт облачных вычислений находится все еще в начальных стадиях разработки .

При этом облачные вычисления как одна из технологий распределения и виртуализации ресурсов, в которой ресурсы и мощности предоставляются пользователю как интернет-сервис, с точки зрения безопасности на первый взгляд имеют преимущества перед традиционными технологиями взаимодействия в сетевых компьютерных структурах. Правда, технологии виртуализации доступа к сетевым ресурсам уже достаточно давно декларировались, в частности в Sun Microsystems, как едва ли не универсальное средство защиты их от несанкционированного использования, но, признавая безусловную эффективность и полезность данного подхода к повышению защищённости информационных ресурсов, панацеей их безопасности он стать, конечно же, не мог. Виртуализация доступа, тем более в отношении публичных сервисов, сама по себе не способна обеспечить информационную безопасность в широком смысле этого слова. Согласно данным CSA , несмотря на наличие встроенных в технологию облачных вычислений механизмов безопасности, при оценке рисков использования «облачных» услуг необходимо принимать во внимание большое количество обстоятельств. Добавим, что они не всегда достаточно определены и могут иметь субъективный характер, что существенно осложняет анализ любой ситуации.

1. Обзор технологических решений

Рассмотрим некоторые из применяемых в настоящее время технологических решений для облачных вычислений для того, чтобы дать представление о них в самом общем виде, без ссылок на источники. Обычно выделяются следующие основные уровни в архитектуре облачных вычислений:

инфраструктура как сервис (IaaS); платформа как сервис (PaaS);.

программное обеспечение как сервис (SaaS); хранение данных (рабочее место) как сервис (DaaS); оборудование как сервис (HHaaS);

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

коммуникации как сервис (CaaS).

На рисунке 1 представлена указанная схема архитектуры.

Рис. 1. Архитектура облачных вычислений

Список не ограничивается приведенными пунктами и может расширяться, так как могут появиться новые технологические тенденции, разнообразные гибридные решения. Общим в таких тенденциях является уверенность, что Интернет способен удовлетворить все потребности пользователя по обработке данных («Всё как сервис»).

Sun Cloud Computing Resource Kit (SCCRK) опирается на принципы открытого ПО: предоставление механизмов взаимодействия для больших компьютерных ресурсов и распределенных приложений через компоненты для облачных вычислений. Предлагается ПО для полного построения облака: гипервизор (Sun xVM Server, базируется на Xen), виртуализация ОС (Solaris Containers), виртуализация сети (Crossbow), виртуализация накопителей

(COMSTAR, ZFS) и сервера приложений (GlassFish, Java CAPS).

Amazon EC2 является центральным компонентом системы для облачных вычислений Amazon Web Service (AWS), позволяющих создавать и загружать в

Amazon S3 (Simple Storage Component) образы виртуальных машин (Amazon Machine Image, AMI), настраивать через веб-сервис безопасность и сетевой доступ. Amazon S3 – виртуальный накопитель, доступ к которому осуществяется через веб-сервис. Как и SCCRK, Amazon предоставляет ПО для всех уровней построения облака. Новая разработка Amazon – CCI(Cluster Compute Instances) – предназначена для перенесения присущих облачному подходу масштабируемости и гибкости в область высокопроизводительных приложений. Компания представила классический Grid продукт, основанный на облачных технологиях – он представляет собой переход от Cloud к Grid –

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

явление, обратное обычной эволюции от Grid к Cloud. По сути, в аренду сдаются мощности большого числа стандартных стоечных серверов. При этом сохраняется возможность в любой момент подключить дополнительные узлы и гарантируется высокая скорость обмена данными (до 10 Гбит/с) между всеми узлами. Пока в семейство Cluster Compute Instances входит только одно решение – Cluster Compute Quadruple Extra Large. Его характеристики таковы: 23 Гб оперативной памяти, 33 стандартных узла EC2 с двумя четырёхъядерными процессорами Intel Xeon X5570 на базе микроархитектуры Nehalem и 1690 Гб дискового пространства. В качестве ОС по умолчанию используется CentOS Linux.

Terremark предлагает облачные решения на базе партнерской программы

VMware"s vCloud Express. В основе сервисов компании GoGrid лежат технологические решения на базе гипервизора Xen для запуска веб-

приложений. Joyent предлагает решения на базе Twitter.com. Microsoft Windows

Azure – сервис IaaS. Основной целью и задачей, поставленной перед сервисом, является тотальная интеграция ОС Windows и всего, что с ней связано, в облачную среду. Облачное решение Google App Engine на базе массивной и отказоустойчивой инфраструктуры и OpenSource стандартов и технологий предоставляет платформу для разработки и запуска приложений в их информационной среде.

NewServers предлагает целиком реальные серверы как сервис для тех пользователей, которые сомневаются в качестве обслуживания и производительности виртуальных сред, но которым необходимы все преимущества облачных технологий. Savvis заявляет высокий уровень обеспечения безопасности в их облачных сервисах как привлекательный фактор для корпоративных заказчиков, которые планируют использовать облачные решения.

Приведённые сведения далеко не исчерпывают рынок внешне разнообразных решений. Общей уязвимостью всех предложений является уже упомянутое утверждение, что Интернет способен удовлетворить все потребности пользователя, так как Интернет сам по себе уязвим во многих отношениях. При этом пользователи обычно даже не думают о том, что по экономическим соображениям используемые провайдерами серверы физически нередко находятся на территориях других государств. То есть немаловажным фактором, имеющим значение для безопасности, о чём также было сказано, является коммерческий характер предоставления облачных услуг, что, вопервых, не способствует вскрытию проблем, которые могут возникнуть у потребителей, особенно неквалифицированных, и, во-вторых, затрудняет доступ к объективной информации, в частности по статистике инцидентов.

(http://www.gazeta.ru/interview/nm/s3680945.shtml) директора по стратегическому развитию «СКБ Контур»: «Слово «облако» мы стараемся не употреблять, потому что пользователь его боится».

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

1. Проблемы безопасности облачных вычислений

Таким образом, первый аспект проблемы безопасности в облачных вычислениях состоит в недостаточной исследованности, определённости и разнородности факторов риска (уязвимостей, угроз и т.д.), сложности структуры их взаимодействия.

Кроме того, проблему обеспечения безопасности в технологиях облачных вычислений приходится рассматривать с двух точек зрения: провайдера услуг и пользователей «облачных» сервисов. Может показаться, что они должны совпадать, т.к. обе стороны заинтересованы в одном и том же результате – безопасности сервисов. Однако на самом деле мотивы, цели и понимание процессов у сторон разные, даже противоположные в некотором смысле, и, следовательно, различаются их модели рисков.

Точка зрения пользователя, его понимание безопасности определяется отчуждением от контроля не только технологических, но и собственных информационных ресурсов, что совершенно естественно порождает в той или иной мере недоверие относительно безопасности предоставляемых услуг. Основные вопросы, которые должны возникать у пользователя (но не обязательно возникают) таковы: как и в какой мере обеспечена сохранность хранимых данных и защита данных при передаче; каковы процедуры аутентификации пользователей и насколько они надёжны; как обеспечена изоляция пользователей в «облаке»; как обрабатываются и какова реакция на инциденты; наконец, каким образом обеспечена и соблюдается нормативноправовая чистота оперирования с данными, в частности с юридически значимыми. Прозрачные ответы на эти вопросы провайдер дать не может.

Последнее обстоятельство порождает специфические препятствия к внедрению «облачных» услуг в правительственные организации – в частности, это проблема безопасности обработки персональных данных граждан в «облаке». Более того, правовые нормы не позволяют перенести в «облака» ряд приложений eGovernment. Поэтому главной задачей провайдера для снижения коммерческого риска является доказательство доверия к «облачным» услугам, поскольку сервисы безопасности в технологиях облачных вычислений декларируются, но практически не проверяемы со стороны пользователя.

Таким образом, ещё один необходимый аспект рассмотрения проблемы безопасности в облачных вычислениях определяется наличием двух взаимозависимых, но не равноправных и не равно ответственных субъектов отношений с несовпадающими целями безопасности.

Проблему безопасности, доверия в облачных вычислениях следует также рассматривать не только относительно настоящего времени, но, что важнее, в контексте тенденции неизбежного распределения и виртуализации ресурсов, этапом развития которой данная технология является. Следовательно, проблему необходимо исследовать с учетом перспективы, когда она еще более усложнится, то есть выявлять, прежде всего, фундаментальные факторы риска.

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

Можно предположить, что нынешняя беззащитность рядового пользователя Интернета лишь слабое подобие возможных проблем при массовой стихийной миграции в коммерческие «облака».

Итак, облачные вычисления, являясь новой методикой доставки ИТ-услуг, имеют ряд особенностей, которые одновременно и упрощают обеспечение безопасности, и предполагают дополнительную оценку рисков как традиционных (в смысле целостности, конфиденциальности и доступности), так и связанных с физическим отчуждением активов от владельца, в том числе юридически значимых. Соответственно, проблема безопасности «облачных» услуг не может считаться только технической и должна рассматриваться и решаться комплексно с учётом разнородных и противоречивых факторов. В итоге она сводится к проблеме доверия и отсутствия практических средств, способствующих повышению его уровня.

Кроме того, проблему безопасности, доверия в облачных вычислениях следует рассматривать в контексте тенденции распределения и виртуализации ресурсов, как отмечалось выше, этапом развития которой данная технология является. Собственный опыт по анализу рисков GRID-технологий, которые в силу своей функциональности и не публичного применения менее чувствительны с точки зрения безопасности, и риски в них имеют преимущественно технический характер, показал, что даже эта задача не проста. Тем более возникнут новые проблемы и усложнится задача анализа рисков в недалёкой перспективе по мере развития технологий и распространения «облачных» и других подобных услуг. Они становятся все более популярными, особенно в последнее время, когда ограниченность финансовых ресурсов вынуждает компании оптимизировать затраты.

По оценкам аналитиков, рынок облачных услуг в 2009 г. составил около 17 млрд долл., а к 2013 г. достигнет 44,2 млрд. Согласно по данным Ассоциации аудита и контроля информационных систем (ISACA), опросившей свыше полутора тысяч организаций более чем в 50 странах Европы, Ближнего Востока и Африки, 33% ИТ-менеджеров уже успешно применяют «облачные» технологии. Однако одна пятая респондентов по-прежнему считает, что риски от внедрения «облаков» перевешивают их преимущества. Более 18% ИТпрофессионалов надеются воспользоваться облачными вычислениями в будущих проектах, а другие 18% пока не определились с какими-либо планами. Оставшиеся 63% не намерены адаптировать «облачные» подходы в своих компаниях. Всего 9,4% ИТ-специалистов в настоящий момент планируют прибегнуть к «облачным» службам для обеспечения работы критических приложений, хотя около двух третей (63%) организаций согласны взять на себя связанные с ИТ бизнес-риски, а 12,1% компаний готовы крупно рисковать, надеясь на максимальную отдачу. На вершине приоритетов у 58% респондентов – защита конфиденциальных данных в «облаках».

Принимая во внимание, что значительная часть «облачных» сервисов востребована в Европе (971 млн евро в 2008 г., до 6,005 млрд – в 2013 г.),

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

Европейское агентство по сетевой и информационной безопасности (European Network and Information Security Agency, ENISA) исследовало риски, связанные с такого рода сервисами. Оценка безопасности облачных вычислений проводилась с учетом трех основных тенденций и сценариев: 1) миграции среднего бизнеса на «облачные» сервисы, 2) влияния облачных вычислений на устойчивость обслуживания, 3) использования облачных вычислений в системах eGovernment, eHealth и прочих социально значимых масштабных проектах. Многие аналитики, в том числе специалисты Gartner, отмечают, что важнейшими аргументами за миграцию на «облачные» сервисы являются снижение стоимости и высокая масштабируемость, а наибольшее беспокойство вызывают вопросы конфиденциальности информации и ответственности за инциденты с используемой инфраструктурой.

Одним из очевидных рисков безопасности облачных вычислений эксперты считают потерю управляемости, ведь клиент передает отдельные рычаги управления ИТ-системой провайдеру, а соглашения об уровне обслуживания зачастую не содержат обязательств, связанных с безопасностью. Более того, действия провайдера, не всегда прозрачные, могут вызвать дополнительные сложности в части соответствия стандартам. К тому же пока предлагается не так много инструментов, процедур, стандартных форматов интерфейсов, которые гарантируют переносимость данных, приложений и служб. Это усложняет (даже в теории) миграцию от одного провайдера к другому либо на собственные ИТ-ресурсы и провоцирует возникновение зависимости.

Впрочем, если риски, связанные с деятельностью провайдеров, в какой-то мере можно отследить еще на этапе выбора поставщика услуг, то технологически обусловленные недостатки систем облачных вычислений обойти вряд ли удастся. Прежде всего, любая крупная система представляет собой желанную цель для разного рода злоумышленников, и, хотя вероятность пробить усиленную защиту меньше, чем в случае малых систем, ущерб от них может оказаться гораздо серьезнее. Поскольку ключевым моментом облачных вычислений является совместное использование ресурсов, возникают риски отказа механизмов изоляции хранилищ, памяти, маршрутизации разных арендаторов.

Остро стоит и вопрос защиты данных – во-первых, доступ к интерфейсам управления и данным осуществляется через Интернет, а системы удаленного доступа, как и браузеры, имеют собственные уязвимости. Во-вторых, пользователю сложно проверить практику работы с данными у провайдера, особенно если деятельность связана с интенсивным обменом информацией. И в-третьих, запрос на удаление данных, как правило, не подразумевает их полного физического уничтожения; периодическая очистка хранимых копий также не всегда возможна, что означает бóльшие риски для клиента, чем при работе с собственным оборудованием. Ну и, разумеется, нельзя сбрасывать со счетов человеческий фактор – в случае облачных вычислений

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

несанкционированная деятельность инсайдеров может привести к особо тяжелым последствиям, а надежной защиты от этого не предвидится.

Универсальных средств пока нет и от других угроз, тем не менее европейские эксперты разработали ряд рекомендаций по минимизации рисков, связанных с миграцией на облачные вычисления, предполагающих четкое разделение сфер ответственности клиента и провайдера в вопросах безопасности. Квалификация разработчиков политик безопасности, технические механизмы и процесс управления рисками, уровень тестирования сервиса, возможности вендора по выявлению непредвиденных уязвимостей и мониторингу аномальной активности, соответствие регуляторным требованиям, возможности провайдера по хранению и обработке данных в рамках определенной юрисдикции, изоляция данных, средства обеспечения непрерывности бизнеса – вот основные факторы, на которые необходимо обращать внимание при миграции в «облака». Государственным структурам необходимо убедиться еще и в том, может ли провайдер предоставить исчерпывающую информацию и контроль за текущим физическим размещением данных, поддерживает ли он принятую схему их классификации, гарантирует ли полную изоляцию ресурсов клиента (т.е. без совместного использования физических компьютеров), поддерживается ли двухфакторная аутентификация и выполняет ли провайдер требования спецификаций ISO

На рисунке 2, приведённом в , иллюстрируются некоторые аргументы «за» и «против» применения технологий облачных вычислений.

Рис. 2. Облачные вычисления: «за» и «против»

Как полагают эксперты, облачные вычисления, предлагающие существенные изменения в подходах к реализации бизнеса, нуждаются в адекватных инструментах оценки рисков, позволяющих выявить и установить уровни потенциальных опасностей по отношению к технологическим

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

преимуществам. Таким образом, чтобы полностью задействовать технологический потенциал облачных вычислений, требуется обеспечить надлежащий уровень информационной безопасности и доверия, но для этого надо уметь, прежде всего, идентифицировать и оценивать риски.

2. Постановка и подход к решению задачи риск-анализа облачных вычислений

В соответствии с представленным выше состоянием проблемы задача рисканализа облачных вычислений в общем виде ставится пока следующим образом. Требуется адекватная сложности и неопределённости проблемы методика анализа рисков и способные к адаптивному развитию инструментальные средства, позволяющие в соответствии с целями комплексной безопасности потребителя выявлять, определять и структурировать разнородные факторы риска облачных вычислений, получать количественные оценки их значимости, а также эффективности мер и средств противодействия для поддержки принятия обоснованных целенаправленных решений, способствующих повышению уровня безопасности и доверия облачных сервисов. В качестве задачи-минимум рассматривается разработка риск-модели облачных вычислений, соответствующей указанным выше требованиям и возможностям, на базе функционально достаточного программного инструментария, без возможности тиражирования, но обеспечивающей повторяемость и верифицируемость результатов.

При этом понятно, что в силу отсутствия систематизированных источников информации и потенциальной сложности поставленной задачи, нельзя сразу рассчитывать на полноту представления модели, тем более что наш подход ориентирован на развитие технологии моделирования и накопление информации. Однако даже в минимальном варианте планируется получить безусловно новую информация, так как подобных исследований в отношении облачных вычислений ещё не проводилось. Ранее нами делались аналогичные оценочные расчеты по анализу рисков в рамках программы фундаментальных исследований Президиума РАН: «Проблемы создания национальной научной распределенной информационно-вычислительной среды на основе развития GRID-технологий и современных телекоммуникационных сетей». Однако поставленная задача, если не ограничивать её, например, только технической прагматикой или, наоборот, вполне уместным экономизмом, а рассматривать в комплексе всех аспектов, выглядит более нетривиальной.

Используемый нами подход к решению задачи можно рассматривать в классе экспертных систем анализа информационных рисков, но он имеет некоторые преимущества перед ними, особенно если речь идёт о сложных, недостаточно определённых информационных объектах . Поэтому данный подход использовался и в других предметных областях.

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

В качестве структурной основы модели анализа рисков и алгоритмизации методики идентификации профиля рисков в нашем подходе используется метамодель , допускающая различные содержательные и алгоритмические интерпретации.

Она построена на дихотомической оппозиции: «защищаемый объект» – потенциально враждебная «среда» в широком смысле этих слов. Подчеркивается необходимость фиксации «границы объекта», или, функционально, – «границы ответственности», и «внешней границы среды», ограничивающей зону досягаемости для противодействия факторам риска.

Элементы модели определяются в терминах трех категорий: субъектов, объектов и воздействий первых на вторые. Столь общая квалификация элементов позволяет использовать модель в более широком спектре исследований. Соответственно категориям выделяются три непересекающихся

«угрозы» нарушения безопасности – множество M e (threat events), в котором

выделяется подмножество так называемых «событий риска» – угроз, непосредственно наносящих ущерб объекту;

«компоненты» объекта – множество M c (components).

На множестве M 0 определяется хотя бы один тип отношений: бинарное

отношение причинности R со свойством транзитивности, к которому можно свести многие связи, имеющие импликативный характер.R упорядочиваетM 0

и задает на нем структуру, фиксирующую каналы распространения потоков угроз от источников до объекта, и порождает квадратную матрицу отношений

W 0.

Цель реализует «система защиты информации» – СЗИ, или, в общем случае, сиcтема защиты противодействия факторам риска, которая представима в виде множества элементов S , каждый из которых осуществляет воздействие на элементы изM 0 . Между элементами множествS иM 0 устанавливается

отношение, формально подобное R , порождающее прямоугольную матрицу отношенийR 0 .

На рисунке 3 показана простая иллюстрация такого представления метамодели.

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

Рис. 3. Структурная схема метамодели

Источники угроз из M s считаются генераторами потока событий (угроз), распространяющегося по каналам, заданным отношениемR наM 0 . Элементы

представляющих события риска, формируется поток угроз, непосредственно воздействующий на объект в составе M c . Тогда средства защиты изS можно

интерпретировать как фильтры.

Роль условного элемента z , соответствующего состоянию объекта в целом, как преобразователя, ограничивается функцией сумматора-интегратора. Тогда на выходеz можно фиксировать результирующий потокf T , интеграл от

которого по некоторому интервалу времени является, по сути, мерой риска для объекта, измеряемого ущербом, наносимым ему за это время.

Простейшая количественная интерпретация метамодели, предполагающая линейный характер отношений в W 0 , отображает ее в арифметическую

матрицу W (w ij ) , элементы которой можно рассматривать как весовые

коэффициенты, имеющие смысл меры влияния i -го элемента наj -й. Она

содержит все исходные данные для расчетов на модели, полученные и представленные тем или иным способом.

с учетом транзитивности R . В результате определяется матрицаV , структурно эквивалентнаяW . При отсутствии рефлексии элементов, еслиW считать взвешенной матрицей смежности некоторого графа, они легко рассчитываются на графе в соответствующих терминах как суммы по всем путям изi -й вj -ю

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

вершину произведений оценок дуг каждого пути, что равносильно матричному преобразованию V (I W )1 I .

Однако в общем случае такой расчет не возможен, и тогда V рассчитывается с использованием аппарата марковских цепей следующим образом. ИзW исключается левый блок нулевых столбцов, соответствующих множествуM s , выделяются верхний горизонтальный блок в виде матрицыW s

V e det(D e )(D e 1 ).

Последний, всегда не содержащий нулей, z -й столбецv z матрицыV содержит искомые показатели {v iz } влияния любогоi -го фактора риска на

безопасность объекта. Эти показатели должны целенаправленно ориентировать создание системы защиты на противодействие наиболее значимым факторам риска.

Для получения количественной оценки результативности системы защиты матрица R 0 также арифметизируется, а соответствующая матрицаR (r kj )

содержит оценки воздействия k -го элемента СЗИ наj -й фактор риска. Далее

она преобразуется в вектор r , гдеr j 1 (1r kj ) , или дополняющий

его u ,u j 1r j ,r j 1,u j 0 , представляющие совместное действие элементов системы защиты. Тогда общий показатель её результативностиr z

рассчитывается

следующим

Во-первых,

определяется

W (I- diag (u

)W )1

Где u

– части вектора

u с компонентами,

относящимися

соответственно

к элементам

множества

M s и

остальным

элементам из М e , далее, используя композицию

ν {e s ;ν s }, гдеe s – вектор,

состоящий

единиц порядка,

количеству

элементов

в M s ,

определяется

r z(v r ) v z,

обозначает

операцию

поэлементного умножения векторов.

отображает

взаимодействие

элементов

моделируемой системы, учитывая трудно предсказуемые мультипликативные эффекты удаленных косвенных влияний и циклических связей, являясь одновременно относительной оценкой изменения интегральной характеристики результирующего потока угроз.

Факторы риска можно также связать с физическими объектами, задав множество P , представляющее оборудование, физические среды, персонал и

защиты получить оценки значимости оборудования в отношении безопасности системы.

В нынешнем состоянии методика существенно усовершенствована с точки зрения представления исходных данных . Они не обязательно числовые, допускается нечёткость, в том числе отношений, и неполнота, а результирующие оценки получаются в стохастическом виде, что способствует большему доверию к ним.

Первым и наиболее сложным этапом в данном подходе при построении риск-модели облачных вычислений является не формализуемый содержательный анализ документации и литературных источников в качестве экспертных знаний для выявления множества актуальных факторов риска. Как уже отмечалось, эта работа не тривиальна, но в любом выполненном объёме имеет позитивный результат с точки зрения накопления информации, на данном этапе мы сейчас находимся. Последующие операции по структурированию множества (таксономическому и логическому), оценочные и расчётные, ведутся уже в автоматизированном режиме, они вариативны и направлены на получение прикладных результатов.

Заключение

Технологии облачных вычислений являются очередным и не последним этапом развития тенденции на распределённость и виртуализацию информационных и технологических ресурсов, которая стала заметной по крайней мере с 70–80-х годов прошлого столетия. Достаточно вспомнить в связи с этим вычислительные сети коллективного пользования тех лет на базе территориально удалённых мэйнфрэймов. Проблемы безопасности таких технологий стояли всегда, хотя и не всегда формулировались явным образом в терминах безопасности, так как это были проблемы профессионалов и для профессионалов, число которых было относительно невелико. Они были вполне конкретны, лишены субъективизма, лежали в организационнотехнической плоскости и решались соответствующими средствами.

Развитие и массовая доступность компьютерных сетей общего доступа породило и продолжает порождать всё новые проблемы сетевой безопасности, касающиеся уже практически всего активного населения, и большинство из них давно вышло за пределы узкотехнических аспектов, стали гуманитарными или социо-техническими. Проведём аналогию: безопасность GRID-технологий как предшествующего этапа развития рассматриваемого направления также была, скорее, технической проблемой, касающейся ограниченного количества специалистов участников GRID-проектов. Теперь же «облака» с учетом перспективы развития данного направления ИТ-услуг переводят проблемы безопасности технологий распределения и виртуализации ресурсов в

публичную плоскость, и, соответственно, решаться они должны уже в комплексе, исходя из разных, в том числе противоречивых, интересов.

Разработанная нами методика, алгоритмы и инструменты, ориентированные на анализ рисков для сложных, недостаточно определённых объектов различной природы, позволяющая проводить анализ рисков в условиях, свойственных для новых систуаций неполноты и гетерогенности исходных данных с получением стохастического профиля рисков, является адекватным средством по решению поставленной задачи. В рамках создания предметно-ориентированных риск-моделей проведены предварительные расчеты с использованием технологии удаленных параллельных вычислений, что может найти применение и в сервисах облачных вычислений.

Список литературы

1. Hewitt C. ORGs for Scalable, Robust, Privacy-Friendly Client Cloud Computing // IEEE Internet Computing, 2008, vol. 12, no. 5, p. 96–99.

2. Черняк Л. Безопасность: облако или болото? // Открытые системы. СУБД, 2010, № 1, c. 16–19.

3. Security Guidance for Critical Areas of Focus in Cloud Computing V2.1.

Copyright © 2009 Cloud Security Alliance, 76 p. URL: https://cloudsecurityalliance.org/csaguide.pdf (дата обращения 29.08.2011).

4. Youssef L. et al. Toward a Unified Ontology of Cloud Computing.

5. Дериева Е. «Облака»: преимущества и риски безопасности // Компьютерное

6. Стрельченко Ю. ИТ-специалисты прибегают к «облачным» вычислениям, несмотря на риски [Электронный ресурс] 24.03.2010. URL: http://net.compulenta.ru/517328 (дата обращения 29.08.2011).

7. Шишкин В.М. Сравнительный анализ методик комплексного оценивания рисков в информационных системах // Региональная информатика (РИ2010) / XII Санкт-Петербургская Международная конференция. СанктПетербург: СПОИСУ, 2010, c. 150.

8. Шишкин В.М. Метамодель анализа, оценки и управления безопасностью информационных систем // Проблемы управления информационной безопасностью: Сборник трудов ИСА РАН / Под ред. Д.С.Черешкина. Москва: Едиториал УРСС, 2002, c. 92–105.

9. Shishkin V.M., Savkov S.V. The Method of Interval Estimation in Risk-Analysis System // Proceedings of the Second International Conference on Security of Information and Networks. Famagusta, North Cyprus: New York: ACM, 2009, p. 3–7.

10. Шишкин В.М., Савков С.В. Методика арифметизации неполной

системах: Труды Международной научной школы МА БР – 2010. СанктПетербург: ГУАП, 2010, с. 295–300.

ТРУДЫ КОНФЕРЕНЦИИ «ТЕХНОЛОГИИ ИНФОРМАТИЗАЦИИ

PROCEEDINGS OF CONFERENCE «TECHNOLOGIES OF INFORMATISATION IN PROFESSIONAL ACTIVITY»

VOL.II, IZHEVSK, NOVEMBER 8–12, 2011

Компании, которые задумываются о переходе к облачным вычислениям (cloud computing), больше всего волнует вопрос безопасности. Но далеко не все знают, что при профессиональном подходе к выбору провайдера облачных услуг существует возможность повысить уровень защиты своих данных. Как выясняется на практике, зачастую провайдер предоставляет более высокий уровень безопасности, чем тот, который компании могут обеспечить внутри собственной инфраструктуры. Дело в том, что решение связанных с безопасностью задач провайдеры берут на себя и посвящают этой работе гигантские усилия. Часто именно на гарантиях безопасности строится вся маркетинговая активность провайдера. Обслуживая предприятия с оборотом в миллиарды долларов, облачные провайдеры делают все от них зависящее для обеспечения максимально безопасной среды. Тем не менее, облачные вычисления несут в себе множество новых рисков для потенциальных пользователей.

Перед тем как довериться определенному провайдеру, компании стоит удостовериться в том, что он действительно обладает средствами для обеспечения уровня надежности, необходимого для безопасной работы с приложениями и хранения данных в облаке. К счастью, возрастающая конкуренция на рынке облачных сервисов заставляет игроков предлагать бòльшие возможности и во многих случаях более гибкий контроль, чем готовы предоставить организациям их собственные ИТ-инфраструктуры. Расчетливые покупатели облачных сервисов, действительно знающие, что им нужно, могут курсировать от одного провайдера к другому в поиске более подходящих для себя решений.

Но прежде чем погрузиться в cloud computing, клиенту необходимо определить полный список требований к вычислительной платформе, включая и уровень безопасности. В этом случае можно обратиться к поставщику с прямым вопросом, способна ли его платформа удовлетворить этим требованиям. Для того, чтобы не ошибиться в выборе, крайне важно знать, какие именно вопросы задавать и что именно искать в ответах провайдера.

Кто на вашей стороне ?

На сегодняшний день лучшим экспертом в сфере облачной безопасности является Cloud Security Alliance (CSA). Эта организация выпустила и недавно обновила руководство, включающее описание сотни нюансов и рекомендаций, которые необходимо принимать во внимание при оценке рисков в облачных вычислениях. Руководство включает 76 страниц, и чтобы вам не пришлось читать столь длинный документ, мы отобрали наиболее важные рекомендации и составили серию вопросов, которые стоит задать потенциальному провайдеру облачных услуг в первую очередь. А также привели ответы, которые вы должны получить. Хотя данная статья и описывает множество ключевых моментов, мы рекомендуем вам в любом случае ознакомиться с оригиналом руководства .

Еще одной организацией, деятельность которой затрагивает аспекты безопасности в облаке, выступает Trusted Computing Group (TCG). Она является автором нескольких стандартов в этой и других сферах, в том числе широко используемых сегодня Trusted Storage, Trusted Network Connect (TNC) и Trusted Platform Module (TPM). Более подробную информацию об этих стандартах можно получить на веб-сайте TCG .

Облачные вычисления: вопросы и ответы

Приведенные ниже пункты являются ключевыми вопросами, которые стоит задать провайдеру, облачными услугами которого вы планируете пользоваться. Каждый вопрос касается одной из шести специфических областей, как показано на рис.1.

Рис. 1: Области безопасности, требующие изучения при выборе
поставщика облачных услуг

Прежде чем обратиться к вопросам, вы должны понять преимущества использования решений основанных на стандартах. И это касается всех областей безопасности. Проприетарные системы несут меньший уровень надежности по сравнению с системами на базе стандартов, и с этим согласны как игроки рынка, так и государственные учреждения, и органы стандартизации. Именно поэтому повсеместное распространение получили такие стандарты, как Advanced Encryption Standard (AES) и Transport Layer Security (TLS). Они претерпели годы анализа и улучшений. Более того, используя основанные на общепринятых стандартах системы безопасности, клиент получает дополнительное преимущество – в случае необходимости он сможет поменять провайдера услуг, так как большая часть провайдеров поддерживают стандартизованные решения.

Еще один момент, который стоит прояснить: как удостовериться в том, что провайдер выполняет данные им обещания? В этом вам поможет заключение соглашения об уровне услуг (Service Level Agreement, SLA), или контракта, или другого письменного документа, где будут четко прописаны обязательства провайдера. Итак, серия вопросов от общего к частному, которые стоит задать потенциальному провайдеру облачных услуг.

1. Сохранность хранимых данных . Как сервис-провайдер обеспечивает сохранность хранимых данных?

Лучшая мера по защите расположенных в хранилище данных – использование технологий шифрования. Провайдер всегда должен шифровать хранящуюся на своих серверах информацию клиента для предотвращения случаев неправомерного доступа. Провайдер также должен безвозвратно удалять данные тогда, когда они больше не нужны и не потребуются в будущем.

2. Защита данных при передаче . Как провадйер обеспечивает сохранность данных при их передаче (внутри облака и на пути от/к облаку)?

Передаваемые данные всегда должны быть зашифрованы и доступны пользователю долько после аутентификации. Такой подход гарантирует, что эти данные не сможет изменить или прочитать ни одно лицо, даже если оно получит к ним доступ посредством ненадежных узлов в сети. Упомянутые технологии разрабатывались в течение "тысяч человеко-лет" и привели к созданию надежных протоколов и алгоритмов (например TLS, IPsec и AES). Провайдеры, должны использовать эти протоколы, а не изобретать свои собственные.

3. Аутентификация . Как провайдер узнает подлинность клиента?

Наиболее распространенным способом аутентификации является защита паролем. Однако провайдеры, стремящиеся предложить своим клиентам более высокую надежность, прибегают к помощи более мощных средств, таких как сертификаты и токены. Наряду с использованием более надежных к взлому средств аутентификации провайдеры должны иметь возможность работы с такими стандартами как LDAP и SAML. Это необходимо для обеспечения взаимодействия провайдера с системой идентификации пользователей клиента при авторизации и определении выдаваемых пользователю полномочий. Благодаря этому провайдер всегда будет располагать актуальной информацией об авторизованных пользователях. Худший вариант – когда клиент предоставляет провайдеру конкретный список авторизованных пользователей. Как правило, в этом случае при увольнении сотрудника или его перемещении на другую должность могут возникнуть сложности.

4. Изоляция пользователей . Каким образом данные и приложения одного клиента отделены от данных и приложений других клиентов?

Лучший вариант: когда каждый из клиентов использует индивидуальную виртуальную машину (Virtual Machine – VM) и виртуальную сеть. Разделение между VM и, следовательно, между пользователями, обеспечивает гипервизор. Виртуальные сети, в свою очередь, развертываются с применением стандартных технологий, таких как VLAN (Virtual Local Area Network), VPLS (Virtual Private LAN Service) и VPN (Virtual Private Network).

Некоторые провайдеры помещают данные всех клиентов в единую программную среду и за счет изменений в ее коде пытаются изолировать данные заказчиков друг от друга. Такой подход опрометчив и ненадежен. Во-первых, злоумышленник может найти брешь в нестандартном коде, который позволит ему получить доступ к данным, которые он не должен видеть. Во-вторых, ошибка в коде может привести к тому, что один клиент случайно "увидит" данные другого. За последнее время встречались и те, и другие случаи. Поэтому для разграничения пользовательских данных применение разных виртуальных машин и виртуальных сетей является более разумным шагом.

5. Нормативно-правовые вопросы . Насколько провайдер следует законам и правилам, применимым к сфере облачных вычислений?

В зависимости от юрисдикции, законы, правила и какие-то особые положения могут различаться. Например, они могут запрещать экспорт данных, требовать использования строго определенных мер защиты, наличия совместимости с определенными стандартами и наличия возможности аудита. В конечном счете, они могут требовать, чтобы в случае необходимости доступ к информации смогли иметь государственные ведомства и судебные инстанции. Небрежное отношение провайдера к этим моментам может привести его клиентов к существенным расходам, обусловленными правовыми последствиями.

Провайдер обязан следовать жестким правилам и придерживаться единой стратегии в правовой и регулятивной сферах. Это касается безопасности пользовательских данных, их экспорта, соответствия стандартам, аудита, сохранности и удаления данных, а также раскрытия информации (последнее особенно актуально, когда на одном физическом сервере может храниться информация нескольких клиентов). Чтобы это выяснить, клиентам настоятельно рекомендуется обратиться за помощью к специалистам, которые изучат данный вопрос досконально.

6. Реакция на происшествия . Как провайдер реагирует на происшествия, и насколько могут быть вовлечены его клиенты в инцидент?

Иногда не все идет по плану. Поэтому провайдер услуг обязан придерживаться конкретных правил поведения в случае возникновения непредвиденных обстоятельств. Эти правила должны быть задокументированы. Провайдеры обязательно должны заниматься выявлением инцидентов и минимизировать их последствия, информируя пользователей о текущей ситуации. В идеале им следует регулярно снабжать клиентов информацией с максимальной детализацией по проблеме. Кроме того, клиенты сами должны оценивать вероятность возникновения проблем, связанных с безопасностью, и предпринимать необходимые меры.

Будущее облачной безопасности

Несмотря на то, что сегодня мы имеем значительно более широкий набор инструментов для обеспечения безопасности, чем прежде, работа далеко не окончена. В некоторых случаях для вывода на рынок той или иной технологии, помогающей решить новую задачу, проходит некоторое время, даже несмотря на то, что она уже разработана. Вот некоторые из таких новейших технологий: данные со встроенной защитой (самозащищенные данные) и доверенные мониторы.

Самозащищенные данные (self-protected data) – это зашифрованные данные, в которые интегрирован механизм обеспечения безопасности. Такой механизм включает в себя набор правил, которым может или не может удовлетворять среда, в которой находятся самозащищенные данные. При попытке доступа к этим данным, механизм проверяет среду на безопасность и раскрывает их, только если среда является безопасной.

Доверенный монитор (trusted monitor) – это программное обеспечение, устанавливаемое на сервер провайдера облачных вычислений. Оно позволяет наблюдать за действиями провайдера и передавать результаты пользователю, который может убедиться в том, что компания действует в соответствии с принятым регламентом.

Когда все исследовательские работы и разработка новых технологий будут завершены, следующим шагом станет их внедрение провайдером услуг. Когда это произойдет, клиенты будут с большим доверием относится к концепции облачных вычислений.