Установлено соединение с сетью edge что. Технология EDGE: что это и зачем это нужно? Начальная страница и новые вкладки

Технология EDGE является очередным шагом в развитии GSM-сетей. Цель внедрения новой технологии - повышение скорости передачи данных и более эффективное использование радиочастотного спектра. С появлением EDGE в GSM-сетях фазы 2+ существующие параметры GPRS и HSCSD значительно улучшаются благодаря изменениям передачи сигнала на физическом уровне (модуляция и кодирование) и новым алгоритмам радиообмена при передаче данных. Сами технологии GPRS и HSCS D не изменяются и могут работать параллельно с EDG E. Наряду с аббревиатурой EDGE можно встретить и термин EGPRS (Enhanced GPRS - «улучшенный» GPRS), обозначающий использование сервиса GPRS с новым физическим уровнем EDGE. Далее мы будем рассматривать EDGE только применительн о к GPRS, поскольку технология HSCSD не получила распространения в России.

Теоретический предел скорости передачи данных в радиоканале при использовании EGPRS составляет 473,6 кбод, в то время как с GPRS - только 160 кбод. Высокие значения скорости достигаются благодаря новому способу модуляции и применению измененного метода передачи радиосигнала, устойчивого к ошибкам. Кроме того, изменения коснулись алгоритмов адаптации к качеству канала.

Исходя из вышесказанного, можно заключить, что EDGE является дополнением к GPRS и не может существовать отдельно. С точки зрения потребителя, GPRS расширяет возможности GSM-сети, в то время как EDGE улучшает технические параметры GPRS.

Применительно к инфраструктуре GSM-сети, EGPR S требует внесения изменений в базовые станции. При этом используется уже существующее ядро GSM-инфраструктуры, и внедрение EDGE означает лишь установку дополнительного оборудования (рис. 1).

Рис. 1.

Параметры EDGE

В таблице приведены основные технические характеристики технологий GPRS и EDGE.

Таблица 1.

Как видно из таблицы, EDGE может передать в три раза больше данных, чем GPRS в тот же период времени. Разница между скоростью в радиоканале (Radi o data rate) и фактической скоростью передачи данных пользователя (User data rate) объясняется тем, что при передаче по радиоканалу к блоку данных пользователя добавляются служебные данные в виде заголовка пакета. Это нередко приводит к путанице при определении пропускной способности GPRS и EGPRS, так как в публикациях встречаются разные показатели скорости. В связи с технологией EDGE чаще встречается цифра 384 кбит/с: международное объединение по телекоммуникациям (International Telecommunications Union - ITU) определяет данную скорость в соответствии с требованиями стандарта IMT-2000 (International Mobile Telecommunications), который предполагает использование восьми тайм-слотов со скоростью 48 кбит/с в каждом.

Новый тип модуляции

При передаче данных в режиме GPRS используется гауссовская манипуляция с минимальным частотным сдвигом GMSK - Gaussian Minimum Shift Keying (рис. 2), которая является разновидностью фазовой модуляции. При передаче бита «0» или «1» фаза сигнала получает положительное или отрицательное приращение. Каждый передаваемый символ содержит один бит информации, то есть каждый фазовый сдвиг представляет один бит. Для достижения большей скорости передачи данных на одном временном интервале (в одном тайм-слоте) необходимо изменить метод модуляции.

Рис. 2.

EDGE разрабатывался для использования той же сетки частот, ширины каналов, методов канального кодирования и существующих механизмов и функций, применяемых GPRS и HSCSD. Для EDG E была выбрана восьмипозиционная фазовая модуляция 8PSK (8-Phase Shift Keying), которая удовлетворяет всем этим условиям. Если говорить об интерференции между соседними каналами, 8PSK имеет те же параметры качества, что и GMSK. Это позволяет интегрировать EDGE-каналы в существующий частотный план и назначать новые EDGE-каналы в том же порядке, как и обычные GSM-каналы.

8PSK представляет собой метод линейной модуляции, в котором одному переданному символу соответствуют 3 бит информации. Скорость передачи символов (или число символов, передаваемых в единицу времени) остается тем же, что и в GMSK, но каждый символ несет информацию в 3 вместо 1 бит. Следовательно, скорость передачи данных увеличивается в 3 раза. Фазовое расстояние между символами в 8PSK меньше, чем в GMSK, что повышает риск ошибки распознавания символа приемником. При хорошем отношении сигнал/шум это не является проблемой. Для успешной работы в условиях плохого радиоканала следует использовать коды коррекции ошибок. Только при очень слабом радиосигнале GMSK-модуляция имеет преимущество перед 8PSK. Для того чтобы иметь возможность эффективно работать при любом соотношении сигнал/шум, в схемах кодирования EDGE применяются оба типа модуляции.

Схемы кодирования и формирование пакетов

Для GPRS определены четыре схемы кодирования: CS1–CS4. Каждая содержит разное количество корректирующих бит, оптимизируя каждую схему кодирования под определенное качество радиолинии. В EGPRS применяется девять схем кодирования, которые обозначаются MCS1–MSC9. Младшие четыре схемы используют модуляцию GMSK и предназначены для работы при худшем соотношении сигнал/шум. В схемах MSC5–MSC9 используется модуляция 8PSK. На рис. 3 представлены максимальные скорости передачи данных, достижимые при использовании разных схем кодирования. Пользователь GPRS может получить предельную скорость передачи данных в 20 кбод, в то время как скорость EGPRS увеличивается вплоть до 59,2 кбод по мере повышения качества радиолинии (приближение к базовой станции).

Рис. 3.

Несмотря на то что схемы CS1–CS4 и MSC 1–MSC4 используют один и тот же вид модуляции GMSK, радиопакеты EGPRS имеют иную длину заголовков и объем полезных данных. Это позволяет изменять схему кодирования «на лету» для повторной передачи пакета. Если пакет со старшей схемой кодирования (с меньшей помехоустойчивостью) получен с ошибкой, то он может быть отправлен повторно с использованием схемы кодирования меньшего номера (с большей помехоустойчивостью) для компенсации ухудшившихся параметров радиолинии. Передача с другой схемой кодирования (ресегментация) требует изменения числа полезных бит в радиопосылке. В GPRS подобная возможность не предусмотрена, поэтому схемы кодирования GPRS и EGPRS имеют разную эффективность.

В GPRS повторение пакета возможно только с оригинальной схемой кодирования, даже если данная схема кодирования перестала быть оптимальной в силу ухудшения качества радиолинии. Рассмотрим на примере схему повторной передачи пакетов (рис. 4).

A. GPRS-терминал получает данные от базовой станции. На основании предыдущего рапорта о качестве радиолинии контроллер базовой станции решает посылать следующий блок данных (номера 1–4) со схемой кодирования CS3. Во время передачи состояние радиолинии ухудшилось (снизилось соотношение сигнал/шум), в результате пакеты 2 и 3 были получены с ошибкой. После передачи группы пакетов базовая станция запрашивает новый рапорт - оценку качества радиолинии.

B. GPRS-терминал передает базовой станции информацию о неправильно доставленных пакетах вместе с информацией о качестве радиолинии (в рапортеподтверждении).

С. Учитывая ухудшение качества связи, алгоритм адаптации выбирает новую, более помехоустойчивую схему кодирования CS1 для передачи пакетов 5 и 6. Однако из-за невозможности ресегментации в GPRS повторная передача пакетов 2 и 3 будет происходить с прежней схемой кодирования CS3, что значительно увеличивает риск неправильного приема этих пакетов GPRS-терминалом.

Алгоритм адаптации GPRS требует очень осторожного выбора схемы кодирования для предотвращения, насколько это возможно, повторной передачи пакетов. Благодаря ресегментации EGPRS может использовать более эффективный метод выбора схемы кодирования, так как вероятность доставки пакета во время повторной передачи здесь значительно выше.

Таблица 2. Группа схем кодирования

Адресация пакетов

При передаче блока пакетов через радиоканал пакеты внутри блока нумеруются - от 1 до 128. Этот идентификационный номер включается в заголовок каждого пакета. При этом количество пакетов в блоке, переданном конкретному GPRS-терминалу, не должно превышать 64. Может возникнуть ситуация, когда номер повторно передаваемого пакета совпадет с номером нового пакета в очереди. В этом случае приходится заново передавать весь блок целиком. В EGPRS пространство адресов пакетов увеличено до 2048, а размер скользящего окна составляет 1024 (максимальное количество пакетов в одном блоке), что значительно снижает вероятность возникновения подобных коллизий. Уменьшение повторных передач на уровне RLC (Radio Link Control) в итоге приводит к увеличению пропускной способности (рис. 5).

Измерение качества радиоканала

Оценка качества связи радиолинии в GPRS производится путем измерения уровня принимаемого сигнала, оценки параметра BER (bit error rate - относительное число неверно принятых битов) и т. д. Выполнение этой оценки отнимает у GPRS-терминала некоторое количество времени, что, в принципе, не играет большой роли при постоянном использовании одной схемы кодирования. При пакетной коммутации данных необходимо оперативно отслеживать качество радиолинии, чтобы быстро менять схему кодирования в зависимости от состояния радиоэфира. Процедура оценки качества канала в GPRS может выполняться только дважды в течение 240-мс периода. Это затрудняет оперативный выбор правильной схемы кодирования. В EGPRS измерения производятся при каждом приеме путем оценки вероятности ошибочных битов (BEP - bit error probability). Основываясь на данных каждой передачи, параметр BEP отражает текущее соотношение сигнал/шум и временную дисперсию сигнала. В результате такого подхода оценка параметров качества канала передачи оказывается достаточно точной даже на коротком измеряемом периоде. Это определяет более высокую эффективность схемы адаптации по сравнению с GPRS.

Функции контроля радиолинии и повышенная избыточность

Для обеспечения максимальной скорости передачи в условиях существующего качества радиоканала в EGPRS используются такие механизмы:

  1. Адаптация к качеству канала. Основываясь на измерениях качества линии при передаче данных (как в направлении мобильного терминала, так и от него), адаптационный алгоритм выбирает новую схему кодирования для следующей последовательности пакетов. Схемы кодирования сгруппированы в три семейства - А, В и С. Новая схема кодирования выбирается из того же семейства, к какому относилась прежняя (рис. 5).
  2. Увеличение избыточности кода. Повышенная избыточность (Incremental Redundancy) используется для старших схем кодирования в случаях, когда вместо анализа параметров радиолинии и изменения схемы кодирования применяется отправка дополнительной информации при последующих передачах. Если при приеме пакета произошли ошибки, то в следующем пакете может быть отправлена избыточная информация, которая поможет скорректировать предыдущие неверно принятые биты. Даная процедура может повторяться до полного восстановления информации в ранее принятом пакете.

В России операторы «большой тройки» уже предоставляют услугу EDGE в нескольких районах Москвы и в ряде регионов страны. Внедрение EDGE происходит постепенно, по мере обновления оборудования базовых станций. «МегаФон» планирует до конца 2005 года охватить технологией EDGE порядка 500 базовых станций. «ВымпелКом» собирается фрагментарно внедрить EDGE на территории Москвы в пределах МКАД (на участках с повышенным GPRS-трафиком), а по России - во всех регионах к концу 2006 - началу 2007 года. МТС заявляет, что «работы ведутся очень интенсивно: покрытие EDGE в Московском регионе расширяется практически ежедневно» .

Литература

  1. EDGE. Introduction of high-speed data in GSM/GPRS networks (www.ericsson.com/products/white_papers_pdf/edge_wp_technical.pdf). /ссылка утрачена/
  2. Материалы сайта «Мобильный форум» (http://mforum.ru/news/article/01-5533.htm). /ссылка утрачена/

Все мы давно пользуемся мобильниками не только в классической роли „купи-хлеба” и „будешь-пить”, а также оттачивания машинописного мастерства набором SMS. Эти функции постепенно отводятся на второй план (ну кроме „будешь-пить” :)). Телефоны всё чаще используются в рабочей среде, а работаем мы с вами как повезёт – и в кабинетах, и в дороге. И хоть, трястись в купейном поезде и сидеть в кресле не совсем одно и тоже, но доступ к информации порой должен быть одинаковым. Вот в качестве средств быстрого доступа к нужной информации по принципу «сейчас же» и внедряются технологии GPRS и EDGE в нашу повседневную жизнь. Итак, что же это за фрукты такие, и попробуем разобраться.

Откуда есть пошёл GPRS на Руси

GPRS – расшифровуется как General Packet Radio Service, по-нашему - «беспроводная передача данных». Сейчас данная технология внедрена всеми мировыми операторами сотовой связи. Причем, за рубежом это было сделано намного раньше чем в России (вообще возраст «буржуйских» GSM-сетей на 7-10 лет больше чем у нас).

Первоначально под GPRS «подгоняли» уже используемые GSM-сети. В чём принцип действия? Чтобы не слишком ударяться в техническую терминологию, упомянем скорость передачи данных в таймслоте (временном интервале) радиоканала. Их всего четыре – CS1, CS2, CS3, CS4.

При голосовом общении или передаче данных, абоненту выделяется часть радиотракта со скоростью около 9,6 кбит/с. Выделенный радиоканал разделяется на временные промежутки (таймслоты), их количество варьируется от возможностей телефона и загруженности сети. Передача GPRS и происходит как раз через свободные на данный момент таймслоты. Скорость, как мы видим, не ахти. Связано это с тем, что первоначально GSM-сети задумывались именно под голосовые услуги, а когда средь ясного неба грянула необходимость передачи данных, то под пристальный взгляд разработчиков в первую очередь попали именно сети этого типа. Вот они и подковали GSM-сети, выжимая из них максимум, одновременно осознавая, что это лишь временная альтернатива, и что нужно разрабатывать сети уже по профилю.

Внедрение GPRS «на Руси» происходило позже, но в несколько лучших условиях, поскольку зарубежные провайдеры начинали с нуля, причём, через некоторое время встала необходимость модернизации оборудования. Наши же сети сравнительно молодые, по сравнению с зарубежными, нашим операторам не приходится вкладываться в модернизацию устаревшего оборудования - они идут проторенной дорожкой, закупая GPRS-совместимое оборудование последнего поколения, которое, к тому же, уже поддерживает EDGE (об это технологии речь пойдёт речь позже).

В России, практически все федеральные операторы предлагают услуги на базе GPRS (Билайн, Мегафон, МТС, региональные компании). Все больше территорий нашей необъятной родины охвачены мобильным интернетом.

Провайдеры приводят разную статистику использования GPRS – цифры варьируются в зависимости от региона, времени суток, абонентского и операторского оборудования - от 6 до 45% абонентской базы.

Телефоны с поддержкой GPRS делятся на 12 классов по скорости (MultySlot Class). Скорость передачи данных - до 40 кбит/с. и больше. Телефоны также классифицируются по способу работы с данными и голосом (GPRS Class). Телефоны класса А могут одновременно и передавать данные и голос. Класс В не позволяет делать одновременно. Класс С поддерживает один из способов выборочно.

Несмотря на положительные сдвиги, нам ещё далеко до Японии и Филлипин, признанных лидеров в области распространения и использования GPRS.

Хотя и у нас постепенно ситуация улучшается – операторские доходы от внедрения GPRS постепенно растут в общей сумме доходов.

По мнению экспертов, GPRS в России приобретает все большую популярность по следующим причинам:

  • Активно развивается рынок мобильного контента. Сейчас, в рунете функционирует несколько сотен WAP-ресурсов, для которых GPRS служит «транспортным средством».
  • Количество поддерживающих GPRS телефонов сейчас в абсолютном большинстве.
  • Операторы постепенно начинают внедрять GPRS-роуминг.

Но не обходится и без трудностей - технических и даже стратегических. Один из главных недостатков сегодня у GPRS в России – маленькая скорость. Теоретически максимальная скорость передачи данных по технологии GPRS достигает 171,3 кбит/с. На деле же она гораздо меньше и зависит от множества объективных причин, а именно:

  • Для работы GPRS используется оборудование, которое может поддерживать или менее скоростные схемы (CS1–CS2) или же более скоростные (CS4). Со с схемами CS3–CS4 не могут работать некоторые устаревшие базовые станции сотовой связи. Конечно, провайдеры, прекрасно понимают сложившуюся ситуацию и по возможности заменяют оборудование на более современное.
  • Количество запросов телефона абонента и количество свободных таймслотов которое может выделить оборудование не всегда могут совпадать, в зависимости от класса оборудования, телефона да и просто загруженности сети.
  • В услуги на базе GPRS сегодня уже без опасений можно вкладывать деньги, но все равно они пока для операторов на вторых-третьих местах по важности. Если сегодня нас чем-то и привлекают - то тарифами со смешными ценами на голосовую связь. В итоге мы говорим, увеличиваем нагрузки на сети и… совершенно забываем про GPRS, которым в таких условиях практически нереально пользоваться. Думаю, все жители больших городов со мной согласятся.
  • Цена 1 Мб GPRS-трафика в России объективно меньше, чем за рубежом. А значит - люди стремятся еще более активно пользоваться мобильным интернетом, тем самым загружая сеть.
  • Количество зарегистрированных и потенциальных пользователей MMS-пользователей несоизмеримо меньше чем есть на самом деле, но MMS - тоже услуга на базе GPRS, к тому же, активно рекламируемая. Сетевых мощностей и на нее не хватает.
  • По телевидению то и дело крутят ролики - «отправь то, получи это». Конечно, получение всех этих картинок, мелодий и игр тоже происходит через мобильный интернет.

Как видите - все не очень радужно. А тут уже в затылок дышит необходимость внедрять сети следующего, 3-ого поколения (3G), что уже ставит под сомнение дальнейшее распространение GPRS-сетей. Но пока связь GSM еще жива, стоит вспомнить еще об одной замечательной технологии передачи данных - EDGE. Она является необходимым продолжением GPRS, о чем свидетельствует и расшифровка названия - Enhanced Data for Global Evolution.

EDGE vs GPRS

Скорость передачи информации по технологии EDGE в 3 раза выше, чем при использовании GPRS - до 474,6 Кб/с (опять-таки теоретически). EDGE позволяет передавать/принимать данные в существующих частотных рамках, характерных для используемых сегодня GSM-сетей, но с возможностями характерных для поколения 3G.

Историю свою EDGE начинает с конца 90-х годов. Компания Ericsson первоначально разрабатывала её для сетей стандарта D-AMPS. Но и попробовала внедрить в GSM-сеть, не без наработок, поскольку технология EDGE представляет собой новую модуляцию в радиоканале базовой станции и мобильного устройства. Для дальнейшего использования этой технологии в рамках существующих сетей нужны EDGE-совместимые передатчики, преобразовывающие сигнал на пути к базовой станции, ну и телефоны, которые поддерживают EDGE (их число постоянно растёт, но все еще не является достаточным). Я бы рекомендовал вам при покупке нового телефона обращать внимание на то, поддерживает ли он EDGE.

Как уже говорилось, российские операторы начали свой бизнес, первоначально закупая современное оборудование, которое было более «продвинутым» по сравнению с оборудованием зарубежных операторов. Причем, пик популярности мобильной связи в России пришелся как раз «к месту» - в это время за рубежом как раз только начали внедрять EDGE. Для российских операторов тем самым отпал целый комплекс проблем - их новое оборудование было готово работать с EDGE. Но остаются и другие вопросы, а именно: административное разрешение на использование этой технологии, поскольку тут мы имеем несколько другой тип модуляции сигнала (а вдруг буржуинские происки? :)). Кроме этого, нужно пересмотреть всё оборудование на предмет совместимости с EDGE, оптимизировать его (при этом учитывая все существующие проблемы с GPRS). Просто необходимо расширять пропускную способность сетей - ведь с внедрением EDGE нагрузка на них удвоится-утроится.

Что имеем?

Итак, единственной пока возможностью быстрого (или сравнительно быстрого) доступа к сети интернет с помощью мобильного телефона пока остаётся GPRS. Несмотря на недостатки (малая скорость, «капризы» сети), это лучше, чем ничего – EDGE наступает, но ещё не наступил. Хотя если вам повезло, и ваш город уже под «ЕДЖём», то можете смело экспериментировать.

Сразу хочется немного притушить наивные ожидания сверх-скоростей. Учитывая структурную неорганизованность GSM-сетей (это не признак исконно российского «бардака», а следствие того, что они имеют топологию «открытой архитектуры» и постоянно обрастают надстройками, а операторы экспериментируют с оборудованием и ПО), очень быстрой передачи данных не будет. Приготовьтесь к скоростям 140-150 кбит/с. Но ведь и это уже неплохо, правда? :)

Совет для пользователей GPRS и EDGE – если вам предстоит неспешная работа с интернетом и у вас есть все для этого (телефон, кабели, компьютер, ПО), то лучше подключаться где-нибудь за городом - в деревне, на даче. Как правило, если эти места в зоне доступа GSM-сети, то она явно не перегружена (там по прежнему доверяют пакетной передаче данных беспроводным способом стандарта ОБС – «одна баба сказала»:)) Копошиться в сети можно быстрее чем в городе, да и здоровью полезнее…

Технология EDGE: что это и зачем это нужно?

Минувший конгресс 3GSM World Congress, а вслед за ним и выставка CeBIT 2006 в Ганновере принесли с собой массу анонсов новых сотовых телефонов с поддержкой технологии EDGE (Enhanced Data for Global Evolution или, как еще иногда можно услышать, Enhanced Data rates for GSM Evolution). Это не случайно — хотя вендоры мобильных телефонов уделяют все больше внимания поддержке стандартов третьего поколения (3G), таких как CDMA2000 1x, W-CDMA и UMTS, развитие 3G-сетей идет крайне медленно, а интерес к сетям второго поколения (2G) и второго с половиной (2,5G) не ослабевает, а, наоборот, растет, причем как на рынках развивающихся стран, так и на рынках развитых стран.

Эволюция стандартов сотовой связи

Во имя «пропедевтики без кровопролития» вернусь немного в историю и расскажу о том, какие поколения стандартов сотовой связи известны сейчас науке. Те же из вас, кто уже знаком с этим вопросом, могут сразу перейти к следующему разделу, посвященному непосредственно технологии EDGE.

iТак, стандарты первого поколения сотовой связи (1G), (разработан в 1978, внедрен в эксплуатацию в 1981 году) и (внедрен в 1983 году), были аналоговыми: низкочастотный голос человека передавался на высокочастотной несущей (~450 МГц в случае NMT и 820-890 МГц в случае AMPS) с применением схемы амплитудно-частотной модуляции. Для того, чтобы обеспечить связь одновременно нескольких человек, в стандарте AMPS, например, частотные диапазоны разбивались на каналы шириной 30 кГц — такой подход получил название FDMA (Frequency Division Multiple Access). Стандарты первого поколения создавались для и обеспечивали исключительно голосовую связь.

Стандарты второго поколения (2G), такие как (global system for mobile communications) и (Code Division Mutiple Access), принесли с собой сразу несколько нововведений. Кроме частотного разделения каналов связи FDMA, голос человека теперь проходил оцифровку (кодирование), то есть, по каналу связи, как и в 1G-стандарте, передавалась модулированная несущая частота, но уже не аналоговым сигналом, а цифровым кодом. В этом — общая черта всех стандартов второго поколения. Различаются они методами «уплотнения» или разделения каналов: в GSM используется подход с временным уплотнением TDMA (Time Division Multiple Access), а в CDMA — кодовое разделение каналов связи (Code Division Mutiple Access), из-за чего этот стандарт так и называется. Стандарты второго поколения также создавались для обеспечения голосовой связи, но в силу их «цифровой природы» и в связи с возникшей в ходе распространения Глобальной Паутины необходимости обеспечить доступ в интернет по мобильному телефоны, предоставляли возможность передачи цифровых данных по мобильному телефону, как по обычному проводному модему. Изначально, стандарты второго поколения не обеспечивали высокой пропускной способности: GSM мог предоставить лишь 9600 бит/с (ровно столько требуется для обеспечения голосовой связи в одном «уплотненном» с помощью TDMA канале), CDMA — несколько десятков Кбит/с.

В стандартах третьего поколения (3G), главным требованием к которым, согласно спецификациям Международного Телекоммуникационного Союза (ITU) IMT-2000, стало обеспечить видеосвязь хотя бы в разрешении QVGA (320х240), необходимо было достичь пропускной способности передачи цифровых данных не менее 384 Кбит/с. Для решения этой задачи используются полосы частот увеличенной ширины (W-CDMA, Wideband CDMA) или большее количество задействованных одновременно частотных каналов (CDMA2000). К слову, изначально стандарт CDMA2000 не мог обеспечить требуемой пропускной способности (предоставляя всего 153 Кбит/с), однако с введением новых модуляционных схем и технологий мультиплексирования с использованием ортогональных несущих в «надстройках» 1х RTT и EV-DO, порог в 384 Кбит/с был успешно преодолен. А такая технология передачи данных, как CDMA2000 1x EV-DV так и вовсе должна будет обеспечить пропускную способность до 2 Мбит/с, в то время как разрабатываемая и продвигаемая сейчас в сетях W-CDMA технология HSDPA (High-Speed Downlink Packet Access) — до 14,4 Мбит/с.

Кроме того, в Японии, Южной Корее и Китае сейчас ведутся работы над стандартами следующего, четвертого поколения, которые смогут, в перспективе, обеспечивать скорость передачи и приема цифровых данных свыше 20 Мбит/с, став, таким образом, альтернативой проводных широкополосных сетей.

Однако, несмотря на все перспективы, которые сулят сети третьего поколения, перейти на них спешат далеко не многие. Причин тому много: это и дороговизна телефонных аппаратов, вызванная необходимостью вернуть вложенные в исследования и разработки средства; и дороговизна эфирного времени, связанная с высокой стоимостью лицензий на частотные диапазоны и необходимостью перехода на несовместимое с существующей инфраструктурой оборудование; и малое время автономной работы из-за чрезмерно высокой (по сравнению с аппаратами второго поколения) нагрузки при передаче больших объемов данных. Одновременно с этим, стандарт второго поколения GSM в силу изначально заложенной в него возможности глобального роуминга и меньшей стоимости аппаратов и эфирного времени (тут политика лицензирования главного поставщика CDMA-технологий, компании Qualcomm, сыграла с ней злую шутку), получил поистине глобальное распространение, и уже в прошлом году число абонентов GSM превышало 1 млрд. человек. Не воспользоваться ситуацией было бы неправильно как с точки зрения операторов, которым хотелось бы увеличить среднюю выручку с одного абонента (ARPU), и обеспечить предоставление сервисов, конкурентоспособных с сервисами 3G-сетей, так и со стороны пользователей, которым хотелось бы иметь мобильный доступ в интернет. То же, что произошло с этим стандартом в дальнейшем, вполне можно назвать небольшим чудом: был придуман эволюционный подход , конечной целью которого было превратить GSM в стандарт третьего поколения, совместимый с UMTS (Universal Mobile Telecommunications System).

Строго говоря, мобильный доступ в интернет был доступен давно: технология CSD (Circuit-Switched Data) позволяла осуществлять модемное соединение на скорости 9600 бит/с, но, во-первых, это было неудобно из-за малой скорости, а во-вторых — из-за поминутной тарификации. Поэтому сначала была придумана и внедрена технология передачи данных (General Packet Radio Service), ознаменовавшая начало перехода к пакетному подходу, а потом — технология EDGE. К слову, есть еще альтернативная GPRS технология HSCSD (High-Speed Circuit Switched Data), но она менее распространена, так как тоже подразумевает поминутную тарификацию, в то время как в GPRS учитывается трафик — пересылка пакетов. В этом — главная разница между GPRS и различными технологиями на базе CSD-подхода: в первом случае абонентский терминал пересылает в эфир пакеты, которые идут произвольными каналами до адресата, во втором — между терминалом и базовой станцией (работающей как маршрутизатор) устанавливается соединение типа точка-точка с использованием стандартного или расширенного канала связи. Стандарт GSM с технологией GPRS занимает промежуточное положение между вторым и третьим поколениями связи, посему нередко называется вторым с половиной поколением (2,5G). Называется он так еще и потому, что GPRS знаменует собой половину пути GSM/GPRS-сетей к совместимости с UMTS.

Технология EDGE, как нетрудно догадаться из ее названия (которое можно перевести как «улучшенные скорости передачи данных для эволюции GSM-стандарта») играет сразу две роли: во-первых, обеспечивает более высокую пропускную способность для передачи и приема данных, а во-вторых, служит еще одним шагом на пути от GSM к UMTS. Первый шаг — внедрение GPRS, уже сделан. Не за горами и второй шаг — внедрение EDGE уже началось в мире и в нашей стране.

Карта покрытия EDGE-сети оператора «Мегафон» в г. Москве (на конец февраля 2006 г.)

EDGE — что это такое и с чем её едят?

Технология EDGE может внедряться двумя разными способами: как расширение GPRS, в этом случае ее следует называть EGPRS (enhanced GPRS) или как расширение CSD (ECSD). Учитывая, что GPRS распространена намного шире, чем HSCSD, остановимся на рассмотрении EGPRS.

1. EDGE не является новым стандартом сотовой связи.

Однако, EDGE подразумевает дополнительный физический уровень, который может быть использован для увеличения пропускной способности сервисов GPRS или HSCSD. При этом, сами сервисы предоставляются точно так же, как и раньше. Теоретически, сервис GPRS способен обеспечивать пропускную спосность до 160 Кбит/с (на физическом уровне, на практике же поддерживающие GPRS Class 10 или 4+1/3+2 аппараты обеспечивают лишь до 38-42 Кбит/с и то, если позволяет загруженность сети сотовой связи), а EGPRS — до 384-473,6 Кбит/с. Для этого необходимо использование новой модуляционной схемы, новых методов кодирования каналов и коррекции ошибок.

2. EDGE, по сути, является «надстройкой» (вернее, подстройкой, если считать, что физический уровень находится ниже остальных) к GPRS и не может существовать отдельно от GPRS. EDGE, как уже было сказано выше, подразумевает использование иных модуляционных и кодовых схем, сохраняя совместимость с CSD-сервисом голосовой связи.




Рисунок 1. Измененные узлы показаны желтым цветом.

Таким образом, с точки зрения клиентского терминала, с внедрением EDGE не должно измениться ничего. Однако, инфраструктура базовой станции претерпит некоторые изменения (см. рис. 1), хотя и не такие уж серьезные. Помимо увеличения пропускной способности для передачи данных, внедрение EDGE увеличивает емкость сети сотовой связи: в один и тот же тайм-слот можно теперь «упаковать» большее количество пользователей, соответственно, можно надеяться не получать сообщение «сеть занята» в самые неподходящие моменты.


Таблица 1. Сравнительные характеристики EDGE и GPRS
GPRS EDGE
Модуляционная схема GMSK 8-PSK/GMSK
Скорость передачи символов 270 тыс. в секунду 270 тыс. в секунду
Пропускная способность 270 Кбит/с 810 Кбит/с
Пропускная способность на тайм-слот 22,8 Кбит/с 69,2 Кбит/с
Скорость передачи данных на тайм-слот 20 Кбит/с (CS4) 59,2 Кбит/с (MCS9)
Скорость передачи данных с использованием 8 тайм-слотов 160 (182,4) Кбит/с 473,6 (553,6) Кбит/с

Таблица 1 иллюстрирует разные технические характеристики EDGE и GPRS. Хотя и в EDGE, и в GPRS в единицу времени отправляется одинаковой число символов, благодаря использованию другой модуляционной схемы, число бит данных в EDGE втрое больше. Сразу оговоримся здесь, что приведенные в таблице значения пропускной способности и скорости передачи данных отличаются друг от друга из-за того, что в первой также учитываются заголовки пакетов, пользователю ненужные. Ну, а максимальная скорость передачи данных в 384 Кбит/с (требуемая для соответствия спецификациям IMT-2000) получается в том случае, если используется восемь тайм-слотов, то есть, на каждый тайм-слот приходится по 48 Кбит/с.

Модуляционная схема EDGE

В стандарте GSM применяется модуляционная схема GMSK (Gaussian minimum shift keying, кодирование по сдвигу Гауссового минимума), являющейся разновидностью фазовой модуляции сигнала. Для пояснения принципа схемы GMSK рассмотрим фазовую диаграмму рис. 2, на которой изображена действительная (I) и мнимая (Q) часть комплексного сигнала. Фаза передаваемых логических «0» и «1» отличаются друг от друга фазой p . Каждый передаваемый в единицу времени символ соответствует одному биту.




Рисунок 2. Разные модуляционные схемы в GPRS и EDGE.

В технологии EDGE применяется модуляционная схема 8PSK (8-phase shift keying, сдвиг фазы, как видно из рисунка, равен p /4), используя все те же спецификации структуры частотных каналов, кодирования и ширины полос, как в GSM/GPRS. Соответственно, соседние частотные каналы создают ровно те же взаимные помехи, как и в GSM/GPRS. Меньший сдвиг фазы между символами, в которые теперь кодируется не один бит, а три (символы соответствует комбинациям 000, 001, 010, 011, 100, 101, 110 и 111), делает задачу детектирования сложнее, особенно если уровень сигнала невысок. Впрочем, в условиях хорошего уровня сигнала и стабильного приема, дискриминировать каждый символ не составляет большого труда.

Кодирование

В GPRS возможно применение четырех разных схем кодирования: CS1, CS2, CS3 и CS4, в каждой из которых используется свой алгоритм коррекции ошибок. Для EGPRS разработано девять схем кодирования, MCS1..MCS9, соответственно, назначение которых также в обеспечении коррекции ошибок. Причем в «младших» MSC1..MSC4 используется модуляционная схема GMSK, в «старших» MSC5..MSC9 — модуляционная схема 8PSK. На рисунке 3 представлена зависимость скорости передачи данных от использования разных модуляционных схем вкупе с разными схемами кодирования (скорость передачи данных меняется в зависимости от того, как много требуемой для работы алгоритмов коррекции ошибок избыточной информации закладывается в каждый кодируемый пакет). Нетрудно догадаться, что чем хуже условия приема (отношение сигнал/шум), тем больше приходится закладывать избыточной информации в каждый пакет, а значит, тем меньше скорость передачи данных. Небольшое отличие в скорости передачи данных, наблюдаемое между CS1 и MCS1, CS2 и MCS2, и т. д., связано с разницей в величине заголовков пакетов.




Рисунок 3. Разные кодовые схемы в GPRS и EDGE.

Впрочем, если соотношение сигнал/шум невелико, не все потеряно: в старших модуляционно-кодовых схемах EGPRS MCS7, MCS8, MCS9 предусмотрена процедура «наложения»: так как стандарт способен отправлять группы пакетов на разных несущих (внутри частотного диапазона), для каждой из которых условия (и прежде всего — «зашумленность») могут быть разными, в этом случае повторной передачи всего блока можно избежать, если знать, в какой группе произошел сбой и повторно транслировать именно эту группу. В отличие от старшей кодовой схемы GPRS CS4, где не используется аналогичный алгоритм коррекции ошибок, в EGPRS MCS7, MCS8, MCS9 разные блоки данных «накладываются» друг на друга, поэтому при сбое в одной из групп (как показано на рисунке), повторной пересылке подлежит лишь половина пакетов (см. рис. 4).




Рисунок 4. Использование наложения групп пакетов в EDGE.

Обработка пакетов

Если по каким-то причинам пакет, отправленный с использованием «старших» схем кодирования, не был корректно принят, EGPRS позволяет его ретранслировать заново с использованием «пониженной» кодировочной схемы. В GPRS такой возможности, названной «ресегментацией» (resegmentation), предусмотрено не было: некорректно принятый пакет отправляется вновь по той же модуляционно-кодировочной схеме, что и в предыдущий раз.

Окно адресации (addressing window)

Прежде чем последовательность кодированных (то есть, в которые закодированы «слова», состоящие из нескольких бит) пакетов (фрейм) может быть передана по радиочастотному интерфейсу, передатчик присваивает пакетам идентификационный номер, включенный в заголовок каждого пакета. Номера пакетов в GPRS составляют от 1 до 128. После того, как последовательность пакетов (например, 10 штук) отправлена адресату, передатчик ждет от приемника подтверждения того, что они были приняты. В отчете, который приемник отправляет обратно передатчику, содержатся номера пакетов, которые были успешно декодированы, и которые получатель декодировать не смог. Важный нюанс: номера пакетов принимают значения от 1 до 128, а ширина адресного окна — всего 64, вследствие чего вновь передаваемый пакет может получить такой же номер, как в предыдущем фрейме. В этом случае протокол вынужден повторно отправлять весь текущий фрейм, что отрицательно сказывается на скорости передачи данных в целом. Для снижения риска возникновения такой ситуации в EGPRS номер пакета может принимать значения от 1 до 2048, а адресное окно увеличено до 1024.

Точность измерения

Для обеспечения корректного функционирования технологии GPRS в среде GSM приходится постоянно измерять радиоусловия: уровень сигнал/шум в канале, частоту появления ошибок и т. п. Эти измерения никак не сказываются на качестве голосовой связи, где достаточно постоянно использовать одну и ту же кодировочную схему. При передаче данных в GPRS измерение радиоусловий возможно лишь в «паузах» — дважды за период 240 мс. Для того, чтобы не ждать каждые 120 мс, EGPRS определяет такой параметр, как вероятность возникновения ошибки на бит (BEP, bit error probability), в каждом фрейме. На величину BEP влияет как отношение сигнал/шум, так и временная дисперсия сигнала и скорость перемещения терминала. Изменение BEP от фрейма к фрейму позволяет оценить скорость терминала и «дрожание» частоты, но для более точной оценки используется среднее значение вероятности ошибки на бит на каждые четыре фрейма и его выборочное стандартное отклонение. Благодаря этому, EGPRS быстрее реагирует на изменения условий: увеличивает скорость передачи данных при снижении BEP и наоборот.

Контроль за скоростью соединения в EGPRS

В EGPRS используется комбинация двух подходов: подстройки скорости соединения и инкрементной избыточности. Подстройка скорости соединения, измеряемой либо мобильным терминалом по количеству принимаемых в единицу времени данных, либо базовой станцией по количеству, соответственно, передаваемых данных, позволяет выбрать оптимальную модуляционно-кодовую схему для последующих объемов данных. Обычно, использование новой модуляционно-кодовой схемы может быть назначено при передаче нового блока (по четыре группы) данных.

Инкрементная избыточность изначально применяется для самой старшей модуляционно-кодовой схемы, MCS9, с незначительным вниманием к коррекции ошибок и без учета условий радиосвязи. Если информация декодируется адресатом некорректно, по каналу связи передаются не сами данные, а некий контрольный код, который «добавляется» (используется для преобразования) к уже загруженным данным до тех пор, пока данные не будут декодированы успешно. Каждый такой «инкрементный кусочек» дополнительного кода увеличивает вероятность успешной расшифровки переданных данных — в этом и заключается избыточность. Главным преимуществом этого подхода является то, что здесь нет необходимости следить за качеством радиосвязи, поэтому инкрементная избыточность является обязательной в стандарте EGPRS для мобильных терминалов.

Интеграция EGPRS в существующие GSM/GPRS сети — UMTS не за горами!

Как уже было сказано выше, главное различие между GPRS и EGPRS — в использовании иной модуляционной схемы на физическом уровне. Поэтому для поддержки EGPRS достаточно установки на базовой станции поддерживающего новые модуляционные схемы трансивера и программного обеспечения для обработки пакетов. Для обеспечения совместимости с не поддерживающими EDGE мобильными телефонами, в стандарте прописано следующее:

  • Поддерживающие и не поддерживающие EDGE мобильные терминалы должны быть способны использовать один и тот же тайм-слот
  • Поддерживающие и не поддерживающие EDGE трансиверы должны использовать один и тот же частотный диапазон
  • Возможна частичная поддержка EDGE
Для облегчения процесса внедрения на рынок новых мобильных телефонов было решено подразделить EDGE-совместимые терминалы на два класса:
  • Поддерживающие модуляционную схему 8PSK только в приемном потоке данных (downlink) и
  • Поддерживающие 8PSK как в приемном, так и в передающем (uplink) потоке данных

Внедрение EGPRS, как уже говорилось выше, позволяет достичь пропускной способности, примерно втрое больше, чем в технологии GPRS. При этом используется в точности такие же профили QoS (quality of service, качество сервиса), как в GPRS, но с учетом увеличившейся пропускной способности. Помимо необходимости установки трансивера на базовой станции, для поддержки EGPRS требуется обновление программного обеспечения, которое должно будет обрабатывать измененный протокол передачи пакетов.

Следующим эволюционным шагом на пути систем сотовой связи GSM/EDGE к «полноценным» сетям третьего поколения будет дальнейшее улучшение сервисов пересылки пакетов (данных) для обеспечения их совместимости с UMTS/UTRAN (UMTS terrestrial radio access network). Эти улучшения в настоящее время проходят рассмотрениеи, скорее всего, будут включены в будущий вариант спецификаций 3GPP (3G Partnership Project). Главное отличие GERAN от внедряемой в настоящий момент технологии EDGE будет поддержка QoS для интерактивных, фоновых, потоковых и переговорных классов. Поддержка этих QoS-классов уже есть в UMTS, благодаря чему в сетях UMTS (скажем, W-CDMA 2100 или 1900 МГц) наличествует возможность, например, видеосвязи. Кроме этого, в будущем поколении EDGE планируется обеспечить одновременную параллельную обработку потоков данных с разным приоритетом QoS.


Для того чтобы отключить любое мобильное устройство от сети Edge могут использоваться различные способы, хотя некоторые из них характеризуются общими принципами действий, которые можно использовать на всех моделях сотовых телефонов. Разберемся: сеть что это такое и как ее можно отключить в своем смартфоне?

Что такое EDGE

Иконка показывающая букву Е, обычно расположенная в верхней части экрана мобильного телефона показывает, что ваше мобильное устройство расположено в зоне покрытия сети EGPRS. Большая часть моделей современных мобильных устройств осуществляет поддержку разных сетей среди которых основным стандартом является GSM, а также другой часто используемый вариант сеть UMTS. При появлении на экране символа Е вы можете быть уверены, что открылась точка доступа для вашего мобильного устройства, хотя это, но не значит, что эта сеть EGPRS может быть использована для обмена данными. Вы должны выяснить, какие именно параметры указаны в строке “точка доступа” открыв настройки своего мобильного телефона. Установки WAP GPRS или GPRS Internet.nw позволяют использовать именно эту сеть для осуществления передачи данных и при этом варианте иконка Е является лишь потенциальной возможностью для того чтобы использовать сеть EGPRS.

Как отключить EDGE в телефоне

Самый простой способ который используется для того чтобы отключить устройство от Edge сети и который рекомендуется производителями сотовых телефонов, заключается в выключении устройства и последующего повторного включения. Также вы можете воспользоваться перезагрузкой мобильного устройства.

В случае если вы уверены, что мобильный телефон, который работает на ОС Android, пользуется Edge соединением для того чтобы произвести активное подключение к интернету с целью проверки обновлений на некоторых форумах советуется использовать специализированный сервис-код “*#4777*8665#” чтобы вызвать меню Attach Mode Settings. После этого необходимо указать команду GPRS detach и осуществить перезагрузку мобильного устройства.

Компанией Apple не предусмотрена явная возможность по отключению протокола передачи GPRS/Edge хотя в зависимости от условий в которых используется роуминг, включение данной функции может обойтись абоненту слишком дорого. Чтобы произвести отключение этой функции вы должны воспользоваться твиком для изменения значений APN в конфигурации устройства iPhone. Чтобы это сделать вам нужно открыть “Настройки”, зайдя на главную страницу устройства, и перейти к категории “Основные”. Далее вы должны кликнуть по ссылке “сеть” и выбрать категорию Edge. После чего нужно напечатать знак. (точка) в поле “адрес APN” после ввода адреса. После выполненных вами действий в случае попытки использовать эту функцию, должно появится окно с сообщением показывающем что данный сервис отключен и передача данных по нему невозможна.

Данная статья рассказывает о мобильных сетях второго и третьего поколения. Описываются такие технологии как GSM, GPRS, EDGE и UMTS. Их преимущества и недостатки, а также этапы развития данных технологий на территории России.

GSM

Для начала разберемся, что такое GSM. GSM (от названия группы Groupe Spécial Mobile, позже переименован в Global System for Mobile Communications) — глобальный цифровой стандарт для мобильной сотовой связи. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 80-х годов.

GSM относится к сетям второго поколения (2 Generation), хотя на 2006 год условно находится в фазе 2,5G (1G — аналоговая сотовая связь, 2G — цифровая сотовая связь, 3G — широкополосная цифровая сотовая связь, коммутируемая многоцелевыми компьютерными сетями, в том числе Интернет). GSM на сегодняшний день является наиболее распространённым стандартом связи. По данным ассоциации GSMA на данный стандарт приходится 82 % мирового рынка мобильной связи, 29 % населения земного шара использует глобальные технологии GSM. В GSMA в настоящее время входят операторы более чем 210 стран и территорий.

GPRS

Аббревиатура GPRS расшифровывается как General Packet Radio Service. GPRS — это пакетная система передачи данных, функционирующая аналогично с сетью Интернет. Весь поток данных отправителя разбивается на отдельные пакеты и затем доставляется получателю, где пакеты собираются воедино, и совсем необязательно, что все пакеты пойдут одним маршрутом. При начале GPRS сессии каждому GPRS терминалу присваивается свой уникальный адрес, протокол GPRS прозрачен для TCP/IP, поэтому интеграция GPRS сети с Интернетом происходит незаметно для конечного пользователя. Итак, GPRS — это своеобразная надстройка технологией мобильной связи GSM, которая позволяет передавать данные на значительно быстрее, чем в обычной GSM-сети. Если в GSM-сети можно получить максимум 14,4 Кбит/с, то теоретический максимум в GPRS составляет 171,2 Кбит/с при полном использовании, но на практике она колеблется в пределах 56 Кбит/сек.

EDGE

Технология EDGE (Enhanced Data Rates for GSM Evolution) это промежуточный этап между технологией GPRS и стандартами связи поколения 3G, например, технологией UMTS (Universal Mobile Telecommunications System - Универсальная система мобильной связи). EDGE позволяет получать доступ к сети с еще большей скоростью. По сравнению с GPRS скорость соединения через EDGE больше примерно в три раза. Если GSM поддерживает скорость 9,6 кбит/с, то в GPRS она возрастает до 172 кбит/c, а в EDGE до 384 кбит/с (теоретическое значение).

Основное преимущество EDGE перед GPRS это конечно скорость. При аналогичной тарификации абонент может передавать большие объемы информации за то же время и при том же количестве используемых таймслотов в радиоэфире, что и через GPRS. Тарификация опять же зависит не от длительности соединения, а от объема переданных данных. В итоге, использование услуг доступа к WAP ресурсам, в Интернет, передача MMS сообщений становятся более эффективными. Кроме того, EDGE дает возможность более уверенно совершать такие операции, как скачивание видео и MP3 файлов, просмотра видеороликов, отправка и получение электронных писем с вложенными приложениями.

UMTS, Универсальная система мобильной связи (Universal Mobile Telecommunications System, УСМС) - технология сотовой связи, относящаяся к третьему поколению.

УСМС (UMTS) позволяет поддерживать скорость передачи информации на теоретическом уровне не менее 14 Мбит в сек. при использовании технология беспроводной широкополосной радиосвязи, использующая пакетную передачу данных, так называемой HSDPA (High-Speed Packet Access — высокоскоростная пакетная передача данных). Однако в настоящий момент самыми высокими скоростями считаются 384 Кбит/сек для мобильных станций технологии R99 и 3,6 Мбит/сек для станций HSDPA в режиме передачи данных от базовой станции к мобильному терминалу. Но и это является несомненным прогрессом по сравнению со вторым и третьим поколением сетей связи, и наряду с другими технологиями беспроводной передачи данных (PHS, WLAN) позволяет получить доступ к всемирной паутине и другим сервисам посредством использования мобильных станций.

Начиная с 2006 года, в сетях УСМС повсеместно распространяется технология высокоскоростной пакетной передачи данных от базовой станции к мобильному терминалу HSDPA, которую принято относить к сетям поколения «3,5G». К началу 2008 года HSDPA поддерживала скорость передачи данных в режиме «от базовой станции к мобильному терминалу» до 7,2 Мбит/сек. В долгосрочной перспективе планируется эволюция УСМС в сети четвертого поколения 4G, позволяющие базовым станциям передавать и принимать информацию на скоростях 100 Мбит/сек и 50 Мбит/сек соответственно, благодаря усовершенствованному использованию воздушной среды.

УСМС позволяет пользователям проводить сеансы видеоконференций посредством мобильного терминала, однако опыт работы операторов связи Японии и некоторых других стран показал невысокий интерес абонентов к данной услуге. Гораздо более перспективным представляется развитие сервисов, предлагающих загрузку музыкального и видео контента: высокий спрос на услуги такого рода был продемонстрирован в сетях 2,5G.

По результатам конкурса на получение лицензий для предоставления услуг сотовой связи в стандарте UMTS на территории России победителями оказались три крупнейших оператора стандарта GSM в РФ: в апреле 2007 года необходимые разрешения были выданы ОАО «Мобильные Теле Системы» (МТС), ОАО «Вымпелком» (торговая марка Би Лайн) и ОАО «МегаФон». Первым российским оператором, запустившим сеть третьего поколения в коммерческую эксплуатацию, стал “Северо-Западный филиал ОАО «Мегафон»”: в начале октября 2007 г. компания ввела в действие сеть из 30 базовых станций на территории г. Санкт-Петербурга, а к концу 2008 г. планирует построить на Северо-Западе 1000 базовых станций с поддержкой UMTS/HSDPA и полностью покрыть сетью 3G Петербург. 28 мая 2008 г. сеть 3G с поддержкой технологии HSDPA в Петербурге запустила в коммерческую эксплуатацию компания МТС. А 15 июля 2008 г. компания МТС в Сочи запустила в коммерческую эксплуатацию сеть 3G с поддержкой технологии HSDPA .Это позволило МТС стать вторым оператором России, начавшим предоставление услуг связи 3G - UMTS.

В начале эры УСМС основными недостатками технологии представляются следующие моменты:

  • относительно высокий вес мобильных терминалов наряду с низкой емкостью аккумуляторных батарей
  • технологические сложности корректного осуществления хэндовера между сетями УСМС и GSM
  • небольшой радиус соты (для полноценного предоставления услуг он составляет 1-1,5 км)