Зарядное устройство imax b6 своими руками схема. Прокачиваем умную зарядку Imax B6

Если занимаетесь электроникой, возможно у вас есть умная зарядка Imax B6 (mini). В комплект не входят балансировочные разъемы и бокс для установки аккумуляторов. Конечно, умельцы начинают их делать своими руками из подручных материалов или готовых купленных запчастей. У кого-то это получается лучше, а у кого-то — нет. В этом посте подробно расскажу, покажу, как сделать.

Для изготовления мне потребовалось:

1. Бокс 2×18650;

2. Бокс 4×18650;


3. Балансировочные разъемы 2s 3s 4S 5S 6s;

4. Провода AWG18;

5. Щупы бананы;

6. Винтовые клеммные колодки 2EDG-5.08-4P + 2EDGV-5.08-4P — 2шт.;

7. Фольгированный стеклотекстолит.

И так, надо изготовить печатную плату

Сделано в программе Sprint Layout, . Скачать печатной платы, формат lay6

После травления платы, все собираем и припаиваем.

Ниже на фото разъем подключен на 5 пять банок. Шестой отсек держателя использовать не будем, так как заряжаем 5 АКБ.

Схема подключения к балансировочному разъему Imax B6

Не имеет значения какое у вас зарядное, оригинал — не оригинал, все они имеют пять сокетов для балансировки литиевых аккумуляторов до 6 штук. Для подключения к балансировочному сокету, соедините все банки последовательно, затем 1-й провод (красный) разъема идет на плюс сборки, а последний провод на минус сборки, соединения между банками идут на промежуточные провода разъема. На (+ ) первой банки и ( ) последней, необходимо припаять щупы бананы. Ниже приведена схема подключения максимального количества аккумуляторов.

На данном примере видим максимальное подключение аккумуляторов, 6 штук. Для подключения пяти, четырех … делаем аналогично, не забываем соблюдать полярность.

Вот я и сделал схему и печатку зарядного устройства. В основном упирал на оформление схемы, печатка получилась так себе. Правда, качество разводки и в оригинале не блещет. Мне не очень интересная оригинальная разводка, ведь я рассматриваю переделку всей печатки.

Есть небольшие отличия от оригинала, потому что я поленился из рисовать. Я не стал рисовать USB-порт, и кварц. Долгое время уже сижу на PIC24, там кварц обычно нафиг не нужен.

Прошу помощи по прохождению нормоконтроля по ГОСТ в оформлении схемы (pdf , p-cad2006). Где есть косяки(кроме того, что нумерация компонентов не по порядку)? Уж сильно много времени убил на оформлении, буквально каждый компонент перерисовывал из своей библиотеки. Получилось красиво, но хочется ещё красивее. Для сравнения, чья-то схема IMAX B6 . Нормоконтролировать картинки в посте не надо, на картинках может быть старая версия.

Вот ещё печатка (тоже P-CAD 2006)

Переченя элементов пока так же нет, почти все номиналы на схеме.

А теперь я расскажу как работает схема. Она весьма интересная.

1. Защита от переполюсовки по питанию

Защита сделана на N-канальном MOSFET транзисторе. Такое решение позволяет обеспечить почти нулевое падение напряжения, по сравнению с защитой на диоде. Например, при токе 3А 12В диод довольно сильно грелся бы, более Ватта.
У этой схемы есть небольшой недостаток: для повышенного напряжения, более 20В, резистор R6 надо заменить на 10-вольтовый стабилитрон.

2. DC-DC преобразователь
Для работы зарядного устройства необходимо наличие регулируемого источника питания. Источника, способного из 12 В сделать как 2В, так и 25В. Вот его схема:


Управляется преобразователь тремя линиями:
1) Линия DCDC/ON_OFF - это запрет работы преобразователя. Подавая на линию 5V, выключается как VT26 (ключ для STEP-UP режима), так и VT27 (ключ для STEP-DOWN режима).
2) Линия STEPDOWN_FREQ двойного назначения: в STEP-UP режиме на этой линии должно быть 5V, иначе питание на катушку L1 не поступит, в step-down на этой линии должна быть частота. Регулируя скважность меняем выходное напряжение.
3) Линия SETDISCURR_STEPUPFREQ. В повышающем режиме на этой линии ШИМ, в понижающем - 0V
Дополнительно реализована защита от КЗ по линии аккумулятора: при превышении зарядного тока сработает VT8, и питание с преобразователя будет снято, транзистор VT26 разомкнётся. Как точно это работает, я не разобрался, можете сами поизучать схему.

Вопрос залу: что делают R114+R115+C20?

Силовые MOSFET ключи VT26 и VT27 управляются двухтактный эмиттерным повторителем: VT13-VT14 и VT17-VT18.

Частота работы преобразователя 31250кГц.

Данный преобразователь нельзя включать без минимальной нагрузки, в качестве которой выступает R128. Причём, в моей версии зарядки, он припаян напаян он поверх других элементов - ошибка разработчиков.

3. Включение аккумулятора

Ни один вывод аккумулятора не подключен на землю напрямую. Это касается как силовых цепей, так и балансировочного разъёма. Плюс аккумулятора подключен на DC-DC преобразователь, минус - к зарядному транзистору. Включив Charge transistor, а также регулируя напряжение на DC-DC, устаналивается необходимый зарядный ток.

4. Защита от дурака при переполюсовке аккумулятора


Включением заряда управляет DA4.2, и заряд идёт лишь при правильном подключении аккумулятора. Запретить же заряд может и контроллер, транзистором VT9.

5: Схема разряда


Схема разряда построена на транзисторе VT24 и двух операционниках. Для включения разряда надо открыть VT12. VT24 - разрядный транзистор. Именно он рассеивает тепло при разряде. Управляет им два операционных усилителя.
Посылая на вход двух RC-цепочек меандр,


контроллер формирует напряжение на In+ DA3.2:

DA3.2 - это схема интегратора(фильтр низких частот). Он будет увеличивать напряжение на выходе (и на затворе разрядного транзистора VT24), а значит и разрядный ток до тех пор, пока напряжение на выводах In+ и In-(красные цепи) не сравняются. На In+ подаётся опорный сигнал от контроллера, на In- сигнал со схемы обратной связи на DA3.1. Результат - ток плавно нарастает до номинального
Коричневый провод - запрет разряда. Если на нём 5 Вольт - разряд запрещён.
По синей линии можно проконтролировать фактический разрядный ток.

6. Схема балансировки и измерения напряжения на ячейках


Как, например измерить напряжение шестой ячейки? Напряжение BAL6 и BAL5 с шестой ячейки подаётся на дифференциальный усилитель DA1.1, который из 25В на шестой ячейки вычитает 21В на пятой. На выходе - 4В.
Нижние ячейки измеряются без участия дифференциального усилителя, делителем. Особо отмечу, что измеряется даже "земля"(BAL0).
Выход коммутируется мультиплексором HEF4051BT на контроллер. Без мультиплексора - никак, ног не хватит.

Балансировочная схема сделана на двух транзисторах. Применительно к шестой ячейке это VT22 и VT23. VT22 - цифровой транзистор, в нём уже встроены резисторы, и он подключается напрямую к выводу контроллера. Если микроконтроллер замечает, что какая-то ячейка перезарядилась, он остановит заряд, включит соответствующую перезаряженной ячейке схему, и через резисторы побежит ток около 200мА. Как только ячейка немного разрядилась, вновь включается заряд всей батареи аккумуляторов.

7. Цифровые цепи


Контроллер измеряет контроллером напряжения на плюсе и минусе аккумулятора. Если произойдёт переполюсовка - на экран будет выведено предупреждение.
Подсветка индикатора зачем-то запитана от транзистора, сам индикатор включен в 4-битном режиме.
Ещё из интересного - источник опорного напряжения TL431.

Ещё вопрос к залу про кварц: неужели для ATMEGA кварц обязателен?

Воистину говорят: лень - двигатель прогресса! Вот и мне, взбудоражила голову мысль, автоматизировать процесс измерения и тренировки кислотных аккумуляторных батарей. Ведь кто, в здравом уме, будет, в наш век умных микросхем, корпеть над аккумулятором с мультиметрами и секундомером? Наверняка, многие знают «народное» зарядное устройство Imax B6. На хабре есть про него (и даже не одна). Ниже я напишу, что я с ней сделал и зачем.

Точность

В начале, моей целью было увеличение разрядной мощности, чтобы измерить свои батареи для бесперебойника и, в перспективе, тренировать их, не подвергаясь риску преждевременной старости (меня, а, не аккумуляторов). Погонял устройство в разобранном виде.

Внутри оно щедро нашпиговано множеством дифференциальных усилителей, мультиплексором, buck-boost регулятором с высоким КПД, имеет хороший корпус, а в сети можно найти открытый исходный код очень неплохой прошивки. При токе зарядки до 5 ампер, им можно заряжать даже автомобильные аккумуляторы на 50А/ч (ток 0.1C). При всем, при этом этом, богатстве, в качестве датчиков тока, здесь используются обычные 1 Вт резисторы, которые, ко всему прочему, работают на пределе своей мощности, а значит, их сопротивление значительно уплывает под нагрузкой. Можно ли доверять такому измерительному прибору? Подув и потрогав руками эти «датчики» сомнения ушли - хочу переделать на шунты из манганина!

Манганин (есть еще константан) - специальный сплав для шунтов, который практически не изменяют своего сопротивления от нагрева. Но его сопротивление на порядок меньше заменяемых резисторов. Так же, в схеме прибора используются операционные усилители для усиления напряжения с датчика до читабельных микроконтроллером значений (я полагаю, верхняя граница оцифровки - опорное напряжение с TL431, около 2,495 вольт).

Моя доработка заключается в том, чтобы впаять шунты вместо резисторов, а разницу в уровнях компенсировать, изменив коэффициент усиления операционных усилителей на LM2904: DA2:1 и DA1:1 (см. схему).

Схема



Для переделки нам понадобятся: само устройство оригинал (я описываю переделку оригинала), манганиновые шунты (я взял от китайских мультиметров), ISP программатор, прошивка cheali-charger (для возможности калибровки), Atmel Studio для ее сборки (не обязательно), eXtreme Burner AVR для ее прошивки и опыт по созданию кирпичей успешной прошивке атмеги (Все ссылки есть в конце статьи).
А так же: умение паять SMD и непреодолимое желание восстановить справедливость.

Я нигде не учился разработке схем и вообще радиолюбительству, поэтому вносить такие изменения в работающее устройство вот так с ходу, было лениво боязно. И тут на помощь пришел мультисим! В нем возможно, не прикасаясь к паяльнику: реализовать задумку, отладить ее, исправить ошибки и понять, будет ли она вообще работать. В данном примере, я смоделировал кусок схемы, с операционным усилителем, для цепи, обеспечивающей режим заряда:

Резистор R77 создает отрицательную обратную связь. Вместе с R70 они образуют делитель, который задает коэффициент усиления, который можно посчитать примерно так (R77+R70)/R70 = коэффициент усиления. У меня шунт получился около 6,5 мОм, что при токе 5 А составит падение напряжения нем 32,5 мВ, а нам нужно получить 1,96 В, чтобы соответствовать логике работы схемы и ожиданиям её разработчика. Я взял резисторы 1 кОм и 57 кОм в качестве R70 и R77 соответственно. По симулятору получилось 1,88 вольт на выходе, что вполне приемлемо. Так же я выкинул резисторы R55 и R7, как снижающие линейность, на фото они не используются (возможно, это ошибка), а сам шунт подключил выделенными проводами к низу R70, C18, а верх шунта напрямую к "+" входу ОУ.

Лишние дорожки подрезаны, в том числе, и с обратной стороны платы. Важно хорошо припаять проводки, чтобы они не отвалились, со временем, от шунта или платы, потому что с этого датчика запитывается не только АЦП микроконтроллера, но и обратная связь по току импульсного регулятора, который, при пропадании сигнала, может перейти в максимальный режим и угробиться.

Схема для режима разрядки принципиально не отличается, но, так как я сажаю полевик VT7 на радиатор, и увеличиваю мощность разрядки до предела полевика (94Вт по даташиту), хотелось бы и максимальный ток разряда выставить по-больше.

В результате я получил: R50 – шунт 5,7 мОм, R8 и R14 - 430 Ом и 22 кОм соответственно, что дает требуемые 1,5 вольт на выходе при токе через шунт 5 А. Впрочем, я экспериментировал и с большим током - максимум вышло 5,555 А, так что зашил в прошивку ограничение до 5,5 А (в файле «cheali-charger\src\hardware\atmega32\targets\imaxB6-original\HardwareConfig.h»).

По ходу вылезла проблема - зарядник отказался признавать, что он откалиброван (i discharge). Связано это с тем, что для проверки используется не макроопределение MAX_DISCHARGE_I в файле «HardwareConfig.h», а вторая точка калибровки для проверки первой (точки описаны в файле «GlobalConfig.h»). Я не стал вникать в эти тонкости хитросплетения кода и просто вырезал эту проверку в функции checkAll() в файле «Calibrate.cpp».

В результате переделок, получился прибор, который обеспечил приемлемую линейность измерений в диапазоне от 100mA до 5А и который можно было бы назвать измерительным, если бы не одно но: так как я оставил мощный разрядный полевик внутри корпуса (несмотря на улучшенное охлаждение), нагрев платы от него все равно вносит искажение в результат измерения, и измерения немного «плывут» в сторону занижения… Не уверен, кто именно виноват в этом: усилитель ошибки или АЦП микроконтроллера. В любом случае, ИМХО, стоит вынести этот полевик за пределы корпуса и обеспечить там ему достаточное охлаждение (до 94Вт или заменить его на другой подходящий N-канальный).

Прошивка

Не хотел я писать про это, но меня заставили.

Немного про мою доработку охлаждения

Полевик VT7, на новом месте, приклеен на термоклей, а его теплоотвод - припаян к медной пластинке:

Охлаждение решил сделать из ненужного радиатора на тепловой трубке от мат-платы. На фото видно подходящую по размерам прижимную пластину и площадку транзистора, по периметру которой проложена изолирующая пластмасса - на всякий случай. Пяточек из жала паяльника припаян прямо к плате, к общему проводу - будет играть роль дополнительного теплоотвода от преобразователя:

Собранная конструкция не помешает стоять прибору на ножках:

Готовы к прошивке:

Я испытал эту переделку в пассивном режиме охлаждения: разряд 20 минут 6-вольтовой Pb-батареи максимальным током 5,5А. Мощность высветилась 30...31Вт. Температура на тепловой трубке, по термопаре, дошла до 91°C, корпус тоже раскалился и, в какой-то момент, экран начал становиться фиолетовым. Я, конечно, сразу прервал испытание. Экран долго не мог прийти в норму, но потом его отпустило.

Теперь уже очевидно, что выносной блок нагрузки, с разъемным соединением, был бы наилучшим решением: в нем нет ограничений на размер радиатора и вентилятора, а сама зарядка получилась бы более компактной и легкой (в поле разряд не нужен).

Надеюсь, что эта статья поможет новичкам быть смелее в экспериментах над беспомощными железяками.
Замечания и дополнения приветствуются.

Предупреждение : описанные модификации, при неумелом применении, могут повредить компоненты зарядки, превратить ее в необратимый «кирпич», а так же привести к снижению надежности устройства и создать риск пожара. Автор снимает с себя ответственность за возможный ущерб, в том числе за зря потраченное время.

Прикупил относительно дёшево универсальное любительское устройство для зарядки большинства распространённых типов аккумуляторов. К сожалению, прибор оказался непригоден для использования по прямому назначению, хотя был полностью исправлен. Проблема в плохой или неверной реализации буквально всех его функций.

Подробности работы собственно Imax B6 разбирать не буду, в сети доступно руководство пользователя, да и зарядка настолько популярна, что можно легко найти множество обзоров по ней. Опишу только особенности этой подделки.

Погнался за дешевизной, получил соответствующий результат. Хотя сейчас и за 30-40 баксов можно легко получить ровно то же самое, китайцы хорошо освоили этот тип подделки. Рецепт его прост — поставить свой микроконтроллер марки Nuvoton, иногда перебитый на Atmel, и запилить туда микропрограмму, максимально внешне похожую на оригинальную. Проблема в том, что программа эта только визуально (по меню) похожа на оригинальную, реализация же функций отвратительна.

Посмотрим на устройство со всех сторон и заглянем внутрь.












Возможно, в дальнем левом углу должен находиться чип, отвечающий за соединение с компом. Забавно, что вместо дорожек всё это место оставлено единым полигоном, а вот шелкографию с маской убрать забыли. Вариант со связью с компом здесь не предусмотрен изначально. Микроконтроллер находится под дисплеем.

Разряд никеля (NiCd, NiMh)

При разряде никеля напряжение измеряется под нагрузкой. Не знаю, как у остальных, но у моих даже хороших (но старых) аккумуляторов довольно высокое внутреннее сопротивление. В итоге при разряде большим током процесс может даже не начаться из-за сильного проседания напряжения батареи. В принципе, это нормально. В этом режиме можно выбрать напряжение разряда, скомпенсировать эту просадку.

Разряд лития (Li-Ion, Li-Po, Li-Fe)

Программы для всех типов лития идентичны, различаются только пороговые напряжения, при достижении которых разряд прекращается. Это напряжение нельзя установить вручную, оно зависит от выставленного напряжения заряда, которое тоже жёстко прошито и зависит только от выбранного типа аккумулятора.

Для лития программа снижает в конце ток, но из-за каких-то проблем с измерениями не может довести процесс до конца, высасывает последние капли часами, причем нижний порог очень часто игнорируется. Зарядник может легко увести напряжение ниже безопасного уровня, что портит литиевые батареи.

При подключении батарейной сборки может сильно разрядиться только часть ячеек, прибор никак не учитывает возможность такого исхода, балансировочное подключение для оценки состояния отдельных ячеек не используется. Можно быстро испортить дорогую даже при разряде до безопасного уровня всей сборки. В единственной попытке полностью разрядить сборку для измерения её ёмкости разброс напряжений ячеек в конце разряда оказался 2,5-3,6 В при безопасном уровне около 3 В.

После переразряда сам зарядник уже не может зарядить батарею обратно, выдавая ошибку «малое напряжение».

У оригинального Imax B6 есть ограничение на мощность разряда в 5 Вт, здесь это ограничение повышено примерно до 7-8 Вт. Вероятно, поэтому устройство при разряде батарей сильно греется, вентилятора внутри нет, всё охлаждение производится за счёт передачи тепла в корпус. Но я не держал в руках оригинальный B6, у него могут быть такие же проблемы и на 5 Вт.

Зарядка никеля

Производитель заявляет зарядку большими токами, 1-2 C вплоть до 5 А. Но в этой подделке в большинстве случаев можно рискнуть поставить лишь 0,2 А. Если установить большее значение, то с большой вероятностью устройство будет считать, что подключено несколько ячеек последовательно и будет подавать повышенное напряжение, что приводит к порче аккумуляторов. Причём излишнее напряжение будет подаваться не сразу, а после небольшой подзарядки и переоценки, т.е. можно подключить батарею, увидеть, что всё вроде в порядке, уйти заниматься другими делами и вернуться в сгоревший дом.

Окончание заряда по Delta Peak реализовано неверно, либо не реализовано вообще, из-за чего батарея часто оказывается недозаряженной. Ещё при запуске программы вылезают ошибки типа «короткое замыкание», «недостаточное напряжение» и «избыточное напряжение», приходится перезапускать несколько раз, пока не заработает.

Зарядка лития (нормальная, быстрая, хранение)

Зарядка литиевой батареи обычно делится на два этапа. На первом происходит зарядка постоянным током заданной величины, здесь зарядка может выдать до 5 А, и проблем с этим нет. На втором этапе производится дозарядка аккумулятора источником напряжения.

И этот, второй, этап почему-то работает очень медленно, иногда затягивая процесс на часы, причин этому я не обнаружил. Вероятно, это как-то связано с ошибочным конечным напряжением для некоторых аккумуляторов. Если заряжать 4,2-В банку до 4,1 В, то зарядка происходит всегда в приемлемые сроки.

В устройстве есть три отдельных программы зарядки — нормальная, быстрая и для хранения. Никаких существенных различий между ними в этом варианте B6 не нашёл. Режим хранения в оригинальной зарядке должен доводить батарею до 3,85 В, разряжая или заряжая её, здесь этот режим всегда просто заряжает батарею до максимума, но в опциях этого режима осталось ограничение от оригинальной программы — ток заряда не может быть больше 1 А. Вообще, разряжать батарею для хранения — плохая идея. И заряжать можно до 100%, хотя уровень 3,85 В, наверное, более предпочтителен, не зря с завода аккумуляторы приходят заряженными примерно до этого напряжения.

Зарядка лития с балансировкой

Ещё больше ерунды происходит при зарядке с подключением балансировочного кабеля. Подделка B6 действительно умеет балансировать ячейки, но только если одна из ячеек не превышает максимально допустимого значения, например из-за зарядки в другом зарядном устройстве с бо льшим конечным напряжением зарядки. В этом случае этот «B6» начинает тормозить, вероятно из-за того, что просто не умеет в таких случаях делать разряд перезаряженной ячейки, из-за чего процесс балансировки просто останавливается. Решение проблемы: разрядить немного всю батарею, после чего запустить балансировку заново.

Балансировка здесь заканчивается при достижении разницы напряжений не более 0,01 В, например после балансировки сборки 4S на 16,8 В (4,2 В на ячейку) напряжения всех ячеек будет в диапазоне 4,19-4,20 В. Поправочка: если батарея, провода или контакты в плохом состоянии, то в итоге можно получить намного больший разброс.

Как и в случае с зарядкой одной ячейки, уменьшение напряжения зарядки до 4,1 В заметно ускоряет процесс.

Еще некоторые особенности

Работу со свинцовыми аккумуляторами не проверял. Эта функция изначально сделана по принципу «лишь бы было», и дорогие аккумуляторы портить для теста я не собираюсь, особенно учитывая склонность этой зарядки разряжать батарею ниже безопасного порога, что для свинца актуально, как и для лития.

Напряжение, отображаемое на дисплее в процессе заряда или разряда, имеет мало общего с напряжением на батарее. Это какое-то внутреннее оценочное значение, никак не интересное пользователю. Если на основе подобных непонятных значений происходит измерение ёмкости, то этой функции, считай, тоже нет. Возможно, проблема в плохих проводах и контактах.

Блок питания в комплект не входит, нужен блок на 11-18 В с отдачей не менее 50 Вт. Если хочется взять модель с блоком питания, ищите B6AC. Я использовал адаптер питания от старого ноутбука на 16 В / 4,5 А (72 Вт), он отлично подошёл. В комплект входят провода с крокодилами для питания от автомобильного аккумулятора.

Оригинальный B6 можно подключить к компу с помощью . В этой подделке такой функции и соответствующего пункта меню нет. Я также очень рассчитывал и на эту функцию. Также, в отличие от оригинала, в этой подделке нет функции калибровки.

Иногда на экране остаются буквы от предыдущих сообщений.

Оригинальный Imax B6

Так как в этой подделке все функции оригинального B6 скопированы как можно более точно, то можно получить некоторое впечатление и об оригинальном устройстве.

Зарядное устройство имеет неотключаемые функции защиты от короткого замыкания, низкого и высокого напряжений. При практическом использовании эта защита только мешает, являясь лишь слабой реализацией защиты от дурака, запускающего, например, программу для лития на никеле. С проблемными батареями защита также усложняют работу, например, приходится держать под рукой ещё один зарядник для подзарядки банок до приемлемого уровня, если они были переразряжены. Но есть и полезный тип защиты — остановка при разрыве цепи, причём она срабатывает и для всех входов балансировочных разъёмов.

Переключение между типами лития выполнено как пользовательская настройка, для которой нужно перебирать всё меню устройства. Очень неудобно. Также при работе с литием нет возможности самому указывать уровни заряда и разряда. Отсутствует возможность зарядки до 4,35 В.

За цену оригинального B6 здесь мог бы быть куда более продвинутый дисплей. Монохромный дисплей из двух строчек по 16 символов в таком непростом устройстве выглядит просто смешно. Микропрограмма устройства тоже не блещет информативностью, выдаёт по большей части бесполезную информацию.

Выводы

Устройством пользовался недолго, но уже понял, что из всех программ можно использовать только 1-2, да и то только в случае отсутствия под рукой нормального устройства и наличия кучи свободного времени.

Так как этот тип подделки на основе чипа от Nuvoton уже очень популярен, есть шанс, что для него придумают альтернативные прошивки, как это было сделано с оригинальным B6 и более точными копиями. Главное, чтобы железо позволяло делать все те вещи, что делает оригинальное устройство.

Чего я хотел от этой зарядки? Всего понемногу и в рабочем состоянии: быструю зарядку никеля, зарядку с балансировкой, измеритель ёмкости, подключение к ПК, функцию зарядки для хранения. Из этого всего я получил только зарядку с балансировкой, да и ту с существенным ограничением и очень долгим временем работы. Подделка не стоит даже потраченных на неё $19.

Меня не очень волнует тот факт, что вместо известного микроконтроллера установлен какой-то малоизвестный другой, лишь бы работало, но увы, это не так. Возможно, альтернативный микроконтроллер хуже по характеристикам, и аналогичную оригинальной программу для него написать нельзя, но более вероятно, что виноват какой-то конкретный программист. Вообще, замена выглядит более интересной хотя бы уже большей точностью АЦП (12 бит против 10 у ATmega32 у оригинала), но точных данных пока нет, даташит не удалось найти даже на сайте производителя, данные по АЦП взяты из общего описания серии M051 .

Из всех функций действительно полезной оказалась только зарядка с балансировкой, но только если заряжать аккумуляторы до 4,1 В (выбрать в настройках тип лития LiIo). Буду заряжать ею . Для этой батареи я сначала планировал купить отдельный балансировочный зарядник на 1 А, который обошёлся бы мне примерно в 12 долларов, Этот зарядник с учётом частичного возврата в ходе диспута с продавцом обошелся мне ещё дешевле, причём ток зарядки здесь может быть до 3,3 А (для аккумуляторных сборок с меньшим напряжением до 5 А).

Если хотите попробовать найти оригинальное зарядное устройство, попробуйте поискать по ключевым фразам «genuine imax b6» и «original imax b6». После покупки лучше вскрыть и убедиться, что внутри стоит микроконтроллер от Atmel, причём проверять надо не только маркировку, она может быть перебита, но и распиновку чипа. (не уверен, что во всех оригиналах всех годов выпуска будут стоять один и тот же микроконтроллер) Лучше брать на eBay, где с контрафактом борются жёстко. Я брал на AliExpress лот с большим числом заказов и кучей положительных отзывов, купился.

Дополнение от 5 октября 2015 года

На одной из фоток выше видно, что силовые и балансировочные разъёмы стоят кривовато. Если с силовыми это не доставляет проблем, то балансировочные можно случайно вставить не до конца, поэтому решил их поправить. Балансировочные разъёмы припаяны к отдельной небольшой плате, которая вставляется в прорезь основной и там к ней припаивается. Чтобы исправить положение разъёмов пришлось сильно вытащить плату из прорези, что уменьшило площадь пайки с обратной стороны, что несколько снизило прочность соединения. Сам принцип такой фиксации кажется очень ненадежным, можно повредить пайку-крепление при частом использовании разъёмов.

Пришлось также полностью снять основную плату с корпуса, и сразу показалась ещё пара проблем. В отличие от верхней стороны, сзади плата вся испачкана остатками флюса, пришлось отмывать. Силовые транзисторы через прокладку и слой термопасты прижимаются к корпусу. Проблема в том, что термопаста уже вся высохла, пришлось всё счищать и смазывать заново.

При сборке не была убрана защитная плёнка с экрана. Она выглядит очень коряво (см. фото выше), так как приклеена не к самому экрану, а к его рамке. Плёнку эту я снял и поставил новую, но уже только на поверхность экрана. Плёнка здесь лишней точно не будет, так как устройство может эксплуатироваться в полевых условиях.

Литий-полимерную сборку с предельным напряжением 4,2 В заряжаю с балансировкой до 4,1 В (режим Li-Ion). Так процесс завершается довольно быстро, хотя батарея оказывается заряженной не до конца. До 4,1 В заряжаю и другие свои аккумуляторы. Из-за относительно большого зарядного тока у этого зарядного устройства так получается быстрее, чем на старых , пытающихся добить батарею до 4,25 В независимо от её возможностей.

Проверил работу на автомобильном свинцовом аккумуляторе. Зарядка ведёт себя примерно так же неадекватно, как и в случае с никелем. Например, я заряжал наполовину разряженный аккумулятор, конечное напряжение показывалось что-то вроде 13,8 В. Для моего аккумулятора такое напряжение даже не вызовет кипения электролита. Подключив уже почти заряженный аккумулятор, зарядник показал, что будет добивать батарею до 14,5 В (точно не помню). Не критично, но уже приходится следить за пузырьками. Затем я ещё раз подключил зарядку, и конечное напряжение поднялось уже до 15,5 В (примерно), текущее напряжение также повысилось, примерно до 14,5 В (снова не помню точно), что привело к закипанию электролита. В общем, заряжать можно, но только под наблюдением, как в случае с любой обычной автомобильной зарядкой, никаких преимуществ здесь нет. Максимальный ток заряда 4,2 А, маловато.

Imax B6 подходит для разных типов батарей. Управляется модификация при помощи качественного микропроцессора. Данная модель выделяется широким диапазоном тока зарядки. Также стоит отметить, что у нее предусмотрена функция ограниченного заряда. Входное напряжение непрерывно отслеживается.

Если говорить про характеристики зарядки, то минимальное напряжение равняется 10 В. Мощность находится на уровне 60 Вт. Минимальный ток разряда у модификации равняется 0.1 А. Также стоит упомянуть о компактных размерах устройства. При длине в 133 мм и ширине в 87 мм, модель имеет толщину только 33 мм. Стоит модификация на рынках примерно 1500 руб. Однако можно изготовить Imax B6AC своими руками.

Схема зарядки

Стандартная схема зарядки включает в себя один микропроцессор, модуль, котроллер и блок расширителя. Также стоит отметить, что в оригинальной версии используется варикап. Он отслеживает импульсные колебания в электрической цепи. За совместимость с батареями отвечает конденсатор. Тиристор применяется на два переходника. Для защиты зарядки используются изоляторы разной проводимости. На входе установлен один фильтр, который работает от усилителя. Также стоит отметить, что у зарядки имеется выпрямитель. И он является частью расширителя.

Делаем блок под зарядку

Сделать блок питания для Imax B6 своими руками довольно просто. В первую очередь подбирается трансформатор. Динистор для этих целей разрешается использовать низкочастотного типа. Для преодоления высокой чувствительности устанавливаются три фильтра на обкладке. Затем, чтобы сделать блок питания для Imax B6 своими руками, берется усилитель. Указанный элемент работает при напряжении 15 В. Предельная частота при этом равняется не менее 55 Гц.

Установка балансировочного разъема

Под Imax B6 балансировочный разъем своими руками может делаться различными способами. Наиболее часто эксперты для этого применяют линейный переходник. Начинать пайку стоит от компаратора. Он установлен за расширителем и является его неотъемлемой частью. При проведении работ проверяется отрицательное сопротивление. Данный параметр у нормальной модели составляет примерно 50 Ом.

Второй способ сборки заключается в установке сеточного переходника на Imax B6. Балансировочный разъем своими руками припаять проблематично. Переходник довольно сложно достать. Однако он имеет массу преимуществ. В первую очередь редко перегревается. Также элемент является прочным. Кроме того, он обладает неплохой проводимостью.

Термодатчик для модификации

Сделать термодатчик для Imax B6 своими руками можно с использованием емкостного триода. В первую очередь при сборке заготавливается Модулятор целесообразнее применять контактного типа. Далее, чтобы собрать для Imax B6 своими руками, нужно воспользоваться фазовым компаратором. Он устанавливается за фильтром. При этом адаптер потребуется на инверторных транзисторах. Проводимость у них должна быть не ниже 45 мк.

Модификация на 10 В

Собирается зарядка Imax B6 своими руками (фото показано ниже) довольно просто. Во время работы важно правильно подобрать конденсатор. Он влияет на общую работоспособность зарядки. В оригинальной версии применяется микропроцессор проводного типа. Для его установки придется использовать трансивер, который крепится к плате через порт. Также стоит отметить, что на выходе у зарядки должно быть напряжение не более 8 В.

Многие специалисты говорят о том, что конденсаторы полевого типа лучше не использовать. Для уменьшения тепловых потерь применяться переходные фильтры с проводимостью от 4 мк. Они не боятся повышенной частотности, а также волновых помех. Еще стоит отметить, что модели данного типа работают в экономном режиме. Непосредственно триод устанавливается с сопротивлением 40 Ом. Обкладка для него подбирается емкостного типа. Непосредственно преобразователь устанавливается за микропроцессором. Для контроля передачи сигнала припаивается компаратор.

Собираем устройства на 15 В

Собрать на 15 В зарядное устройство Imax B6 своими руками можно на базе дуплексного расширителя. Однако в первую очередь стоит заняться обкладкой. В оригинальной версии она выполнена без пайки. Также стоит отметить, что у модели должно быть установлено два фильтра. Непосредственно напряжение зарядки стоит проверять тестером. После установки микропроцессора припаивается триод.

Указанный элемент разрешается использовать на один переходник. Тепловая отдача у него в среднем равняется 89%. При этом проводимость зависит от многих факторов. Конденсаторы на зарядки устанавливаются с тетродами. Данные элементы способны работать при частоте не ниже 40 Гц. При напряжении 15 В в работу включается блокиратор. Для понижения частотности модификации эксперты рекомендуют применять широкополосные выпрямители.

Самодельные модификации на 15 В

Собирается на 15 В зарядка Imax B6 своими руками без проводникового компаратора. Однако стоит отметить, что проводимость устройства не будет составлять более 5 мк. Основная проблема при сборке может заключаться в тетроде. Довольно сложно в наше время найти оригинальную деталь с емкостью 5 пФ. Однако ее можно заменить линейным аналогом, который является универсальным элементом. Он спокойно функционирует при частоте не более 5 Гц. При сборке модификации стоит постоянно отслеживать напряжение.

При резком повышении данного параметра стоит использовать варикап. При понижении чувствительности можно попробовать заменить фильтры. После установки микропроцессора стоит заняться пайкой транзистора. Если использовать полевые аналоги, то у них низкий коэффициент отдачи. Также стоит отметить, что они не способны работать в экономном режиме. Рабочая температура элементов в среднем равняется 45 градусов. Изоляторы на зарядку целесообразнее устанавливать низкой проводимости.

Устройства с выходом АР

Собрать (с выходом АР) зарядное устройство Imax B6 самому (своими руками) очень просто. Для этого потребуется только один переходник. Он будет соединяться с расширителем. Если рассматривать стандартную схему зарядки, то триод нужно использовать регулируемого типа. Также для сборки потребуется модулятор и микропроцессор. Преобразователь разрешается использовать на две обкладки, а минимальная частота у него должна равняться примерно 50 Гц.

Таким образом, устройством достигается высокая проводимость при малых тепловых потерях. Если верить экспертам, то фильтры можно закреплять только с полупроводниками. Выходное напряжение на расширителе не должно превышать 15 В. При обнаружении проблем с перегревом конденсатора стоит внимательно рассмотреть изолятор. При его повреждении можно попробовать прочистить элемент.

Модели только с выходом АА

Сделать (с входом АА) зарядное устройство Imax B6 своими руками немного сложнее, чем предыдущую модификацию. В данном случае придется подбирать два переходника канального типа. Непосредственно микропроцессор используется на 50 Гц. Для решения проблем с проводимостью стандартно устанавливается компаратор. Преобразователь у модификации должен обладать хорошей чувствительностью. В оригинальной версии он защищается двумя фильтрами, которые установлены по сторонам от него.

Если верить экспертам, то можно использовать операционные аналоги. Эти фильтры не боятся перегревов. Для защиты компаратора также применяется изолятор низкой проводимости. Адаптер целесообразнее использовать на обкладке, а устанавливать его следует за расширителем. Затем стоит припаять варикап. Непосредственно переходники под разъем монтируется возле компаратора. При повышении сопротивления на выходе специалистами предлагается незамедлительно заменить фильтры. Также стоит поверить состояние изолятора, который установлен рядом с микропроцессором.

Устройства с совместимостью Li-ion

Сделать модификацию с совместимостью Li-ion можно на базе открытого компаратора. Он работает при частоте 55 Гц и хорошо справляется с передачей синусоидальных сигналов. Однако начинать сборку модификации стоит стандартно с установки микропроцессора. Только после этого разрешается заняться расширителем, который крепится на обкладке и соединяется с электрической цепью.

Для решения проблем с проводимостью преобразователь линейного типа можно заменить сеточными аналогами. Они дешево стоят и являются вполне компактными. Варикап целесообразнее для зарядки подобрать на магнитной ленте. При обнаружении проблем с чувствительностью на обкладке экспертами рекомендуется проверить работоспособность микропроцессора. Проблему может заключаться только в нем.

Устройства с совместимостью LiPo

Сделать (с совместимостью LiPo) зарядку Imax B6 своими руками довольно просто, но потребуется качественный переходник под модификацию. Микропроцессор устанавливается на обкладке. Многие эксперты рекомендуют использовать стабилизаторы. Они значительно уменьшают риск появления магнитных помех. Также стоит отметить, что они хорошо справляются с импульсными скачками в электрической цепи зарядки. Адаптер на модификацию можно устанавливать за триодом.

Таким образом, понадобится только один изолятор. Фильтры стандартно используются с проводимостью от 4 мк. Если верить экспертам, то особое внимание стоит уделить тетроду, который припаивается за компаратором. Если отрицательное сопротивление резко меняется, нужно протестировать цепь от микропроцессора. Номинальное напряжение должно составлять 13 Вю. При обнаружении проблем с проводимостью всегда стоит проверять динистор.

Зарядки с совместимостью Ni-Cd

Модификации с совместимостью Ni-Cd чаще всего производятся на магнитных модулях. Расширитель в данном случае разрешается использовать на два контакта с проводимостью не более 55 мк. Некоторые эксперты говорят о том, что после установки микропроцессора стоит проверить отрицательное сопротивление. Также важно помнить, что параметр выходного напряжения при перегрузке 3 А не должен превышать 15 В. Обкладки в устройствах разрешается использовать с фильтрами.

В данном случае хорошо подходят переходные модификации низкой чувствительности. При этом изолятор устанавливается за расширителем. При возникновении проблем на обкладке рекомендуется перепроверить проводимость микроконтроллера. В некоторых случаях проблема также может заключаться в фильтре. При незначительном отклонении сопротивления можно попробовать установить компаратор, который будет подавлять все импульсные помехи от блока.

Модификации с совместимостью Pb

Чтобы сделать (с совместимостью Pb) модификацию Imax B6 своими руками, рекомендуется заготовить микроконтроллер на 40 Гц, а также расширитель диодного типа. Специалисты в данном случае не советуют устанавливать выходные изоляторы. В первую очередь они снижают параметр чувствительности зарядки.

Также стоит отметить, что существуют определенные проблемы с преобразованием тока. Стабилизаторы на зарядках чаше всего применяются однопереходного типа. При этом преобразователь стоит устанавливать за выпрямителем. С целью решения проблем фильтра используются трансиверы. Данные устройства должны работать при частоте 33 Гц. Показатель перегрузки на выходе у зарядки не должен превышать 4 А. Транзисторы довольно часто применяются низкоомного типа.

Устройства под батареи NiMH

Чтобы собрать (для батарей NiMH) зарядное устройство Imax B6 своими руками, можно использовать только один переходник с Микроконтроллер в данном случае стандартно устанавливается за расширителем. Некоторые эксперты советуют сразу проверять отрицательное сопротивление для того, чтобы избежать дальнейших проблем перегрузки. Транзистор на зарядку устанавливается регулируемого типа. Непосредственно переходник припаивается на краю компаратора. Всего для модификации потребуется два фильтра небольшой емкости.

Усилитель целесообразнее применять с преобразователем, который сможет работать при напряжении 15 В. Также стоит отметить, что защитить микропроцессор можно только при помощи изоляторов. Триод в оригинальной версии зарядки используется широкополосного типа. Он выдерживает импульсные помехи и хорошо себя показывает в условиях повышенного напряжения.

Применение динамических трансиверов

Как сделать зарядное устройство Imax B6? Отвечая на этот вопрос, стоит отметить, что динамические трансиверы способны работать при частоте не более 35 Гц. Для сборки модификации потребуется в первую очередь проводной расширитель и дополнительно микропроцессор. Фильтры для модели целесообразнее использовать однопереходного типа. Некоторые эксперты говорят о том, что для устройств замечательно подходят резисторные блоки с проводимость от 55 мк. В данном случае стоит замерить выходное напряжение и проверить сопротивление. При сбоях в цепи рекомендуется заменить микропроцессор. Переходник для зарядки разрешается устанавливать с дискретным переключателем. Также стоит отметить, что модули у зарядок используются с лучевыми транзисторами.

Использование триггера на диодах

Как сделать зарядное устройство Imax B6 своими руками? Триггеры на диодах значительно повышают проводимость модели. Для самостоятельной сборки модификации эксперты советуют использовать конденсаторные расширители. Однако в первую очередь на оборудование устанавливается микропроцессор. Также стоит позаботиться о подборе качественного модуля. Для увеличения проводимости модификации рекомендуется применять аналоговые модели.

Расширитель устанавливается на переходнике. Для проверки модификации следует замерить уровень отрицательного сопротивления на проводниках. Данный параметр не должен превышать 45 Ом. Контроллер на зарядку припаивается с катодом. Чувствительность у него должна составлять около 30 мВ. В последнюю очередь проверяется проводимость расширителя. Если этот параметр более 50 мк, то на зарядку придется установить сеточный фильтр. При заниженной чувствительности ставится динистор с переходником.

Зарядка с линейными триггерами

Довольно часто зарядки собираются на линейных триггерах. Данные элементы способны работать при повышенной частотности. У них малая проводимость, а предельное равняется 50 В. Для того чтобы собрать зарядку, рекомендуется установить микропроцессор и подобрать расширитель. Конденсаторы в такие устройства эксперты советуют устанавливать с проходным транзистором. Также стоит отметить, что решить проблемы повышенной частоты всегда можно благодаря канальным фильтрам.