Системная шина используется для. Системная шина. Ускоренный графический порт

Введение

1. Внутренние шины

1.1.1 PCI Express 1.0

1.1.2 PCI Express 2.0

1.1.3 PCI Express 3.0

1.2 HyperTransport

2. Внешние шины

2.3.1 SATA Revision 2.x

2.3.2 SATA Revision 3.x

2.4 SerialAttachedSCSI

2.4.2 Новые функции SAS 2.0

Заключение

Список информационных источников


Компьютерная ши́на (от англ. computer bus, bidirectional universal switch - двунаправленный универсальный коммутатор) - в архитектуре компьютера, подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером. В отличие от связи точка-точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов (соединений) для физического подключения устройств, карт и кабелей.

Ранние компьютерные шины представляли собой параллельные электрические шины с несколькими подключениями, но сейчас данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины.

Компьютерная шина служит для передачи данных между отдельными функциональными блоками компьютера и представляет собой совокупность сигнальных линий, которые имеют определенные электрические характеристики и протоколы передачи информации. Шины могут различаться разрядностью, способом передачи сигнала (последовательные или параллельные, синхронные или асинхронные), пропускной способностью, количеством и типами поддерживаемых устройств, протоколом работы, назначением (внутренняя или интерфейсная).


1.1.1 PCI Express 1.0

PCI Express - компьютерная шина, использующая программную модель шины PCI и высокопроизводительный физический протокол, основанный на последовательной передаче данных.

Последовательная шина PCI Express, разработанная Intel и ее партнерами, призвана заменить параллельную шину PCI и ее расширенный и специализированный вариант AGP.

Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка, называемое lane; это резко отличается от PCI, в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.

Соединение между двумя устройствами PCI Express называется link, и состоит из одного (называемого 1x) или нескольких (2x, 4x, 8x, 12x, 16x и 32x) соединений lane. Каждое устройство должно поддерживать соединение 1x.

На электрическом уровне каждое соединение использует низковольтную дифференциальную передачу сигнала (LVDS), приём и передача информации производится каждым устройством PCI Express по отдельным двум проводникам, таким образом, в простейшем случае, устройство подключается к коммутатору PCI Express всего лишь четырьмя проводниками.

Использование подобного подхода имеет следующие преимущества:

· карта PCI Express помещается и корректно работает в любом слоте той же или большей пропускной способности (например, карта x1 будет работать в слотах x4 и x16);

· слот большего физического размера может использовать не все lane’ы (например, к слоту 16x можно подвести линии передачи информации, соответствующие 1x или 8x, и всё это будет нормально функционировать; однако, при этом необходимо подключить все линии «питание» и «земля», необходимые для слота 16x).

В обоих случаях, на шине PCI Express будет использовать максимальное количество lane’ов доступных как для карты, так и для слота. Однако это не позволяет устройству работать в слоте, предназначенном для карт с меньшей пропускной способностью шины PCI Express (например, карта x4 физически не поместится в слот x1, несмотря на то, что она могла бы работать в слоте x4 с использованием только одного lane).

PCI Express пересылает всю управляющую информацию, включая прерывания, через те же линии, что используются для передачи данных. Последовательный протокол никогда не может быть заблокирован, таким образом задержки шины PCI Express вполне сравнимы с таковыми для шины PCI. Во всех высокоскоростных последовательных протоколах (например, GigabitEthernet), информация о синхронизации должна быть встроена в передаваемый сигнал. На физическом уровне, PCI Express использует ставший общепринятым метод кодирования 8B/10B (8 бит данных заменяются на 10 бит, передаваемых по каналу, таким образом 20% трафика является избыточными), который позволяет поднять помехозащищённость.

Шина PCI работает на частоте 33 или 66 МГц и обеспечивает пропускную способность 133 или 266 Мб/сек, но эта пропускная способность делится между всеми устройствами PCI. Частота, на которой работает шина PCI Express - 2.5 ГГц, что дает пропускную способность 2500 МГц / 10 * 8 = 250 * 8 Мбит/сек = 250 Мб/сек для каждого устройства PCI Express x1 в одном направлении. При наличии нескольких линий для вычисления пропускной способности величину 250 Мб/сек надо умножить на число линий и на 2, т.к. PCI Express является двунаправленной шиной (Табл.1).


Табл.1 таблица пропускной способности PCI.

Кроме того, шиной PCI Express поддерживается:

· горячая замена карт;

· гарантированная полоса пропускания (QoS);

· управление энергопотреблением;

· контроль целостности передаваемых данных.

1.1.2 PCI Express 2.0

Группа PCI-SIG выпустила спецификацию PCI Express 2.0 15 января 2007 года. Основные нововведения в PCI Express 2.0:

· Увеличенная пропускная способность - спецификация PCI Express 2.0 определяет максимальную пропускную способность одного соединения lane как 5 Гбит/с. Внесены усовершенствования в протокол передачи между устройствами и программную модель.

· Динамическое управление скоростью - для управления скоростью работы связи.

· Оповещение о пропускной способности - для оповещения ПО (операционной системы, драйверов устройств и т.п.) об изменениях скорости и ширины шины.

· Расширения структуры возможностей - расширение управляющих регистров для лучшего управления устройствами, слотами и интерконнектом.

· Службы управления доступом - опциональные возможности управления транзакциями точка-точка.

1.1.3 PCI Express 3.0

PCI-SIG в середине августа 2010 года представила версию 0.9 спецификации PCI Express 3.0.

Для пользователей основное отличие между PCI Express 2.0 и PCI Express 3.0 будет заключаться в значительном увеличении максимальной пропускной способности. У PCI Express 2.0 сигнальная скорость передачи составляет 5 ГТ/с (гигатранзакций в секунду), то есть пропускная способность равняется 500 Мбайт/с для каждой линии. Таким образом, основной графический слот PCI Express 2.0, который обычно использует 16 линий, обеспечивает двунаправленную пропускную способность до 8 Гбайт/с.

У PCI Express 3.0 мы получим удвоение этих показателей. PCI Express 3.0 использует сигнальную скорость 8 ГТ/с, что даёт пропускную способность 1 Гбайт/с на линию. Таким образом, основной слот для видеокарты получит пропускную способность до 16 Гбайт/с.

На первый взгляд увеличение сигнальной скорости с 5 ГТ/с до 8 ГТ/с не кажется удвоением. Однако стандарт PCI Express 2.0 использует схему кодирования 8B/10B.

PCI Express 3.0 переходит на намного более эффективную схему кодирования 128B/130B, устраняя 20% избыточность. Поэтому 8 ГТ/с – это уже не "теоретическая" скорость; это фактическая скорость, сравнимая по производительности с сигнальной скоростью 10 ГТ/с, если бы использовался принцип кодирования 8b/10b.


1.2 HyperTransport

Шина HyperTransport (HT)- это двунаправленная последовательно-параллельная компьютерная шина с высокой пропускной способностью и малыми задержками.

HyperTransport работает на частотах от 200 МГц до 3,2 ГГц (у шины PCI - 33 и 66 МГц). Кроме того, она использует DDR, что означает, что данные посылаются как по переднему, так и по заднему фронтам сигнала синхронизации, что позволяет осуществлять до 5200 миллионов посылок в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.

Шина HyperTransport основана на передаче пакетов. Каждый пакет состоит из 32-разрядных слов, вне зависимости от физической ширины шины (количества информационных линий). Первое слово в пакете - всегда управляющее слово. Если пакет содержит адрес, то последние 8 бит управляющего слова сцеплены со следующим 32-битным словом, в результате образуя 40-битный адрес. Шина поддерживает 64-разрядную адресацию - в этом случае пакет начинается со специального 32 разрядного управляющего слова, указывающего на 64 разрядную адресацию, и содержащего разряды адреса с 40 по 63 (разряды адреса нумеруются начиная с 0). Остальные 32-битные слова пакета содержат непосредственно передаваемые данные. Данные всегда передаются 32-битными словами, вне зависимости от их реальной длины (например, в ответ на запрос на чтение одного байта по шине будет передан пакет, содержащий 32 бита данных и флагом-признаком того, что значимыми из этих 32 бит являются только 8).

Пакеты HyperTransport передаются по шине последовательно. Увеличение пропускной способности влечёт за собой увеличение ширины шины. HyperTransport может использоваться для передачи служебных сообщений системы, для передачи прерываний, для конфигурирования устройств, подключённых к шине и для передачи данных.

Шина HyperTransport нашла широкое применение в качестве процессорной шины. Она имеет оригинальную топологию (Рис.1) на основе линков, тоннелей, цепей и мостов, что позволяет этой архитектуре легко масштабироваться. HyperTransport призвана упростить внутрисистемные сообщения посредством замены существующего физического уровня передачи существующих шин и мостов, а также снизить количество узких мест и задержек. При всех этих достоинствах HyperTransport характеризуется также малым числом выводов (low pin counts) и низкой стоимостью внедрения. HyperTransport поддерживает автоматическое определение ширины шины, допуская ширину от 2 до 32 бит в каждом направлении (Таблица 2), кроме того, она позволяет передавать асимметричные потоки данных к периферийным устройствам и от них.

Знать строение компьютера обычному пользователю совершенно не обязательно. Но если вы хотите считать себя продвинутым пользователем, который без труда справляется с любой поставленной компьютерной задачей, да к тому же собирается в ближайшем будущем самостоятельно собрать свой первый системный блок, то подобные знания просто необходимы.

Функционирование компьютера невозможно без наличия в нем хотя бы одной из перечисленных ниже систем:

  1. Процессора.
  2. Видеоплаты.
  3. Оперативного запоминающего устройства.

Но даже все эти компоненты в совокупности не смогут функционировать. Для этого необходимо организовать между ними связь, посредством которой осуществлялись бы логические и вычислительные операции. Подобные системы связи организуют системные шины компьютера. Поэтому можно сказать, что это еще один незаменимый компонент системного блока.

Системная шина

Системная шина - это совокупность путей передачи данных, которые обеспечивают взаимосвязанную работу между остальными элементами компьютера: процессором, видеоадаптером, жесткими дисками и другими компонентами. Данное устройство состоит из нескольких уровней:

  • механического;
  • электрического или физического;
  • логического и уровня управления.

Первостепенное деление системных шин

Деление шин основывается на нескольких факторах. Первенствующим показателем является месторасположение. Согласно этому показателю шины бывают:

  1. Внутренними, которые обеспечивают взаимосвязь внутренних компонентов системного блока, таких как процессор, ОЗУ, материнская плата. Такая системная шина называется еще локальной, так как служит для связи местных устройств.
  2. Внешними, которые служат для подключения наружных устройств (адаптеров, флеш-накопителей) к материнской плате.

В самом общем случае системной шиной можно назвать любое устройство, которое служит для объединения в одну систему нескольких устройств. Даже сетевые подключения, например, сеть Интернет, в некотором роде является системной шиной.

Самая важная система связи

Вся деятельность, которую мы осуществляем посредством компьютера - создание разнообразных документов, воспроизведение музыки, запуск компьютерных игр - была бы невозможна без процессора. В свою очередь, микропроцессор не смог бы выполнять свою работу, если бы не имел каналов связи с другими важными элементами, такими как ОЗУ, ПЗУ, таймеры и разъема ввода-вывода информации. Именно для обеспечения этой функции в компьютере имеется системная шина процессора.

Быстродействие компьютера

Для функционирования микропроцессора в состав системы каналов связи входит сразу несколько шин. Это шины:


Количество представленных типов системных каналов связи процессора может быть от одного и более. Причем считается, что чем больше шин установлено, тем больше общая производительность компьютера.

Важным показателем, который также затрагивает производительность ПК, является пропускная способность системной шины. Она определяет скорость передачи информации между локальными системами электронно-вычислительной машины. Рассчитать ее довольно просто. Необходимо лишь найти произведение между тактовой частотой и количеством информации, то есть байт, которая передается за один такт. Так, для давно устаревшей шины ISA пропускная способность составит 16 Мбайт/с, для современной шины PCI Express это значение будет находиться на отметке в 533 Мбайт/с.

Виды компьютерных шин

История компьютерной техники насчитывает уже не одно десятилетие. Совместно с развитием новых компонентов разрабатывались и новые типы системных шин. Самым первым таким каналом связи была система ISA. Этот компонент компьютера обеспечивает передачу данных на довольно медленной скорости, но ее достаточно для одновременного функционирования клавиатуры, монитора и некоторых других компонентов.

Несмотря на то что она была изобретена более полувека назад, данная системная шина активно применялась и в настоящее время, уверенно конкурируя с более современными представителями. Это смогло осуществиться благодаря выпуску большого количества расширений, которые увеличивали ее функционал. Лишь в последние годы процессоры стали выпускаться без использования ISA.

Современные системные шины

Шина VESA стала новым словом в области компьютерной техники. Разработанная специально для непосредственного подключения внешних устройств к самому процессору, она и по сей день обладает высокими показателями скорости передачи информации и обеспечивает высокую производительность процессора.

Но подобная система каналов связи не в состоянии обеспечить надлежащее функционирование микропроцессора. Поэтому она внедряется в систему совместно с ISA и выступает в роли еще одного расширения.

Вот и вся краткая справочная информация, которая должна пролить свет на один из важнейших компонентов современных компьютеров. Следует сказать, что здесь представлена лишь малейшая частичка информации о компьютерных шинах. Полным их изучением занимаются в специальных заведениях на протяжении нескольких лет. Подобная детальная информация необходима непосредственно для разработки новых моделей микропроцессоров или для модернизации уже существующих. Шина PCI является ближайшим конкурентом предыдущего представителя каналов передачи данных. Эта системная шина была разработана компанией Intel специально для производства процессоров собственной торговой марки. Данное устройство способно обеспечить еще большую скорость передачи данных и при этом не нуждается в дополнительных элементах, как в предыдущем примере.

«А что такое шины»? Странный вопрос, может сказать любой человек. Шины мы видим с самого детства - велосипедные, легковые, грузовые шины - т.е. то, что «одевается» на колеса. Но оказывается, и не все знают о том что существуют компьютерные шины. Компьютером сейчас никого не удивишь, он почти «настольный» предмет любого школьника. Но вот что там внутри - это знают немногие увлеченные, школьники-любители, да работники сервисных центров.


Итак, в Викпедии написано, что «компьютерная ши́на (от англ. computer bus, bidirectional universal switch — двунаправленный универсальный коммутатор) — в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера». Т.о. можно сказать, что если сердцем ПК является процессор, то шины ПК - это те артерии, по которым бегут электрические сигналы. И те разъемы, куда обычно вставляются жесткие диски, видео карточки, сетевые карты - это не шины, это лишь слоты-интерфейсы, и именно с их помощью! и происходит подключение к шинам. Т.е. другими словами, с помощью шин компьютерные устройства обмениваются информацией. За работой шин следят специальные контроллеры.

Шины бывают двух типов: системная шина и шина расширения. Системная шина (или шина процессора) необходима для обмена информацией между процессором и оперативной и внешней памятью. Вторая шина служит для подключения периферийных устройств и является как бы продолжением шины процессора, связывая ее с внешними устройствами. Помимо контроллера каждая шина включает в себя компоненты адреса, данных, управления.

Если грузовые шины имеют свои характеристики (размеры, тип рисунка, конструкцию по расположению нитей корда, тип герметизации), то и компьютерные шины имеют свои характеристики. Каковы же они?

Основными характеристиками компьютерных шин можно считать

  • Разрядность, определяющая количество бит данных, которые могут быть одновременно переданы. Т.е. если шина 16 разрядная, то она имеет 16 каналов для одновременной передачи данных.
  • Тактовую частоту.
  • Максимальную скорость передачи данных в секунду.

Компьютерные шины постоянно совершенствуются. Если в 80-х годах прошлого столетия популярной была системная шина IBM PC/XT, обеспечивавшая передачу 8 бит данных, то с появлением процессора i286 появилась и новая системная шина ISA (Industry Standard Architecture). Но шло время, появились процессоры i386, i486 и Pentium и системная шина ISA постепенно становится «узким» местом персональных компьютеров на основе этих процессоров.

В настоящее время спектр шин достаточно широк и их количество и качество постоянно растет. Каждая шина имеет свои определенные преимущества, а, возможно, и недостатки. Часто в современных компьютерах применяются свои «фирменные» шины.


Комментарии и отзывы

Практически все современные крупные производители смартфонов весьма активно выпускают упрощенные версии с...

Стиральные машины стали привычными помощниками практически в каждом доме, взяв на себя рутинную работу по...

В последнее время производители смартфонов стали все менее и менее активно защищать свои смартфоны от сли...

Мы какое-то время назад уже рассказывали нашим читателям о том, что компания HTC переживает не лучшие вре...

На просторах интернета появилась информация о том, что компания Samsung готовит к релизу свой новый планш...

Здравствуйте, уважаемые читатели блога сайт. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности - такое понятие, как "Системная шина". Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных - данные, адреса - соответственно, адрес (устройств и ячеек памяти), управления - управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись "FSB". Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как "Front-side bus" - то есть "передняя" или "системная". И, на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе - нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись "O.C." означает, буквально "разгон", это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора - помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины - все это синонимы . Все разъемы материнской платы - видеокарта, жесткий диск, оперативная память "общаются" между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Пока что это все, спасибо.

Шина процессора - соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится , далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus - FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP . Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS , называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB . В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность - 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.