Схема передачи информации по различным техническим каналам. Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи

Распространение информации происходит в процессе ее передачи.

При передаче информации всегда есть два объекта – источник и приемник информации. Эти роли могут меняться, например, во время диалога каждый из участников выступает то в роли источника, то в роли приемника информации.

Информация проходит от источника к приемнику через канал связи, в котором она должна быть связана с каким-то материальным носителем. Для передачи информации свойства этого носителя должны изменяться со временем. Так лампочка, которая все время горит, передает информацию только о том, что какой-то процесс идет. Если же включать и выключать лампочку, можно передавать самую разную информацию, например, с помощью азбуки Морзе.

При разговоре людей носитель информации – это звуковые волны в воздухе. В компьютерах информация передается с помощью электрических сигналов или радиоволн (в беспроводных устройствах). Информация может передаваться с помощью света, лазерного луча, системы телефонной или почтовой связи, компьютерной сети и др.

Информация поступает по каналу связи в виде сигналов, которые приемник может обнаружить с помощью своих органов чувств (или датчиков) и «понять» (раскодировать).

Сигнал – это изменение свойств носителя, которое используется для передачи информации.

Примеры сигналов – это изменение частоты и громкости звука, вспышки света, изменение напряжения на контактах и т.п.

Человек может принимать сигналы только с помощью своих органов чувств. Чтобы передавать информацию, например, с помощью радиоволн, нужны вспомогательные устройства: радиопередатчик, преобразующий звук в радиоволны, и радиоприемник, выполняющий обратное преобразование. Они позволяют расширить возможности человека.

С помощью одного сигнала невозможно передать много информации. Поэтому чаще всего используется не одиночный сигнал, а последовательность сигналов, то есть сообщение. Важно понимать, что сообщение – это только «оболочка» для передачи информации, а информация – это содержание сообщения. Приемник должен сам «извлечь» информацию из полученной последовательности сигналов. Можно принять сообщение, но не принять информацию, например, услышав речь на незнакомом языке или перехватив шифровку.

Одна и та же информация может быть передана с помощью разных сообщений, например, через устную речь, с помощью записки или с помощью флажного семафора, который используется на флоте. В то же время одно и то же сообщение может нести разную информацию для разных приемников. Так фраза «В Сантьяго идет дождь», переданная в 1973 году на военных радиочастотах, для сторонников генерала А. Пиночета послужила сигналом к началу государственного переворота в Чили.

Таким образом, информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи ис­пользуются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Передача информации возможна с помощью любого языка кодирования информации, понятного как источнику, так и приёмнику.

Кодирующее устройство – устройство, предназначенное для преобразования исходного сообщения источника информации к виду, удобному для передачи.

Декодирующее устройство – устройство для преобразования кодированного сообщения в исходное.

Пример. При телефонном разговоре: источник сообщения – говорящий человек; кодирующее устройство – микрофон – преобразует звуки слов (акустические волны) в электрические импульсы; канал связи – телефонная сеть (провод); декодирующее устройство – та часть трубки, которую мы подносим к уху, здесь электрические сигналы снова преобразуются в слышимые нами звуки; приёмник информации – слушающий человек.

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: пло­хое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же ка­налам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума. Существует наука, разрабатывающая способы защиты информации – криптология, широко применяющаяся в теории связи.

Клодом Шенноном была разработана специальная теория ко­дирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части ин­формации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это при­ведёт к задержкам и подорожанию связи. Иными словами, чтобы содержание сообщения, искаженного помехами, можно было восстановить, оно должно быть избыточным, то есть, в нем должны быть «лишние» элементы, без которых смысл все равно восстанавливается. Например, в сообщении «Влг впдт в Кспск мр» многие угадают фразу «Волга впадает в Каспийское море», из которой убрали все гласные. Этот пример говорит о том, что естественные языки содержат много «лишнего», их избыточность оценивается в 60-80%.

При обсуждении темы об измерении скорости передачи инфор­мации можно привлечь прием аналогии. Аналог – процесс пере­качки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются техничес­кие линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость пе­редачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др.

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» ана­логии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом дав­лении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный пре­дел скорости передачи данных имеют и технические линии инфор­мационной связи. Причины этому также носят физический характер.

На сегодняшний день информация так быстро распространяется, что не всегда хватает времени ее осмыслить. Большинство людей редко задумываются о том, как и с помощью каких средств она передается, а уж тем более не представляют себе схему передачи информации.

Основные понятия

Передачей информации принято считать физический процесс перемещения данных (знаков и символов) в пространстве. С точки зрения передачи данных - это спланированное заранее, технически оснащенное мероприятие по перемещению информационных единиц за установленное время от так называемого источника к приемнику посредством информационного канала, или канала передачи данных.

Канал передачи данных - совокупность средств или среда распространения данных. Другими словами, это та часть схемы передачи информации, которая обеспечивает движение информации от источника к получателю, а при определенных условиях и обратно.

Классификаций каналов передачи данных много. Если выделить основные из них, то можно перечислить следующие: радиоканалы, оптические, акустические или беспроводные, проводные.

Технические каналы передачи информации

Непосредственно к техническим каналам передачи данных относятся радиоканалы, оптоволоконные каналы и кабельные. Кабель может быть коаксиальный или на основе витых пар. Первые представляют собой электрический кабель с медным проводом внутри, а вторые - витые пары медных проводов, изолированные попарно, находящиеся в диэлектрической оболочке. Эти кабели довольно гибкие и удобные в использовании. Оптоволокно состоит из оптоволоконных нитей, передающих световые сигналы посредством отражения.

Основными характеристиками являются пропускная способность и помехоустойчивость. Под пропускной способностью принято понимать тот объем информации, который можно передать по каналу за определенное время. А помехоустойчивостью называют параметр устойчивости канала к воздействию внешних помех (шумов).

Общее представление о передаче данных

Если не конкретизировать область применения, общая схема передачи информации выглядит несложно, включает в себя три компонента: «источник», «приемник» и «канал передачи».

Схема Шеннона

Клод Шеннон, американский математик и инженер, стоял у истоков теории информации. Им была предложена схема передачи информации по техническим каналам связи.

Понять эту схему несложно. Особенно если представить её элементы в виде знакомых предметов и явлений. Например, источник информации - человек, говорящий по телефону. Телефонная трубка будет являться кодирующим устройством, которое преобразует речь или звуковые волны в электрические сигналы. Каналом передачи данных в этом случае является узлы связи, в общем, вся телефонная сеть, ведущая от одного телефонного аппарата к другому. Декодирующим устройством выступает трубка абонента. Она преобразует электрический сигнал обратно в звук, то есть в речь.

В этой схеме процесса передачи информации данные представлены в виде непрерывного электрического сигнала. Такая связь называется аналоговой.

Понятие кодирования

Кодированием принято считать преобразование информации, посылаемой источником, в форму, пригодную для передачи по используемому каналу связи. Самый понятный пример кодирования - это азбука Морзе. В ней информация преобразуется в последовательность точек и тире, то есть коротких и длинных сигналов. Принимающая сторона должна декодировать эту последовательность.

В современных технологиях используется цифровая связь. В ней информация преобразуются (кодируется) в двоичные данные, то есть 0 и 1. Существует даже бинарный алфавит. Такая связь называется дискретной.

Помехи в информационных каналах

В схеме передачи данных также присутствует шум. Понятие "шум" в данном случае означает помехи, из-за которых происходит искажение сигнала и, как следствие, его потеря. Причины помех могут быть различные. Например, информационные каналы могут быть плохо защищены друг от друга. Для предотвращения помех применяют различные технические способы защиты, фильтры, экранирование и т. д.

К. Шенноном была разработана и предложена к использованию теория кодирование для борьбы с шумом. Идея заключается в том, что раз под воздействием шума происходит потеря информации, значит, передаваемые данные должны быть избыточны, но в то же время не настолько, чтобы снизить скорость передачи.

В цифровых каналах связи информация делится на части - пакеты, для каждого из которых вычисляется контрольная сумма. Эта сумма передается вместе с каждым пакетом. Приемник информации заново вычисляет эту сумму и принимает пакет, только если она совпадает с первоначальной. В противном случае пакет отправляется снова. И так до тех пор, пока отправленная и полученная контрольные суммы не совпадут.

Передача информации по каналу с решающей обратной связью

дипломная работа

1.2.1 Способы передачи информации по каналам связи

Передача информации с повторением (накоплением). Такой метод передачи применяют для повышения достоверности при отсутствии обратного канала, хотя нет принципиальных ограничений для его использования и при наличии обратной связи. Иногда такой метод классифицируют как прием сообщений с накоплением. Сущность метода заключается в передаче одного и того же сообщения несколько раз, запоминании принятых сообщений, сравнении их поэлементно и составлении сообщения, включая элементы, выбранные «по большинству». Предположим, что трижды передана одна и та же кодовая комбинация 1010101. Во всех трех передачах она подверглась воздействию помех и была искажена:

Приемник поразрядно сравнивает три принятых символа и проставляет те символы (под чертой), количество которых в данном разряде преобладает.

Существует и другой метод передачи информации с накоплением, при котором производится не посимвольное сравнение, а сравнение всей комбинации в целом. Этот метод проще реализуется, но обеспечивает более плохие результаты.

Таким образом, высокая помехоустойчивость метода передачи информации с повторением (накоплением) основана на том, что сигнал и помехи в канале не зависят друг от друга и изменяются по разным законам (сигнал периодичен, а помеха случайна), поэтому повторяющаяся комбинация в каждой передаче, как правило, будет искажаться по-разному. Вследствие этого на приеме накопление, то есть суммирование сигнала, возрастает пропорционально числу повторений, тогда как сумма помехи возрастает по другому закону. Если считать, что помехи и сигнал независимы, то суммируются средн-ие квадраты и средний квадрат суммы возрастает пропорционально первойстепени. Поэтому при n повторениях отношение сигнал/помеха увеличивается в n раз, причем это происходит без увеличения мощности сигнала. Однако это достигается за счет усложнения аппаратуры и возрастания времени передачи или полосы частот в случае, если сигнал передается на нескольких частотах одновременно во времени. Кроме того, при зависимых ошибках и пачках ошибок помехоустойчивость системы снижается.

Передача информации с обратной связью. Помехоустойчивость передачи без обратной связи (ПБОС) обеспечивается следующими способами: помехоустойчивым кодированием, передачей с повторением, одновременной передачей по нескольким параллельным каналам. В ПБОС применяются обычно коды с исправлением ошибок, что связано с высокой избыточностью и усложнением аппаратуры. Передача с обратной связью (ПОС) во многом устраняет указанные недостатки, так как позволяет применять менее помехоустойчивые коды, обладающие, как правило, меньшей избыточностью. В частности, можно использовать коды с обнаружением ошибок. Преимуществом обратного канала является также возможность контроля работоспособности объекта, принимающего информацию.

При ПОС вводят понятие прямого канала, т.е. канала от передатчика к приемнику, например передается сигнал команды с пункта управления (ПУ) на контролируемый пункт (КП). Обратным каналом при этом явится передача сообщения с КП на ПУ о принятии сигнала команды, причем по обратному каналу могут передаваться как сообщение только о том, что сигнал принят на входе КП (в этом случае контролируется лишь прохождение сигнала по каналу связи), так и сведения о полном выполнении команды. Возможна и обратная связь, дающая сведения о поэтапном прохождении сигнала команды по тракту приема.

Рассмотрим отдельные виды передачи с обратной связью.

Передача с информационной обратной связью (ИОС). Если сообщение передается в виде непомехозащищенного кода, то в кодирующем устройстве данный код может быть преобразован в помехозащищенный. Однако, поскольку в этом обычно нет необходимости, кодирующее устройство представляет собой регистр для превращения простого параллельного кода в последовательный. Одновременно c передачей по прямому каналу сообщение запоминается в накопителе на передатчике (рис.1.1а). На контролируемом пункте принятое сообщение декодируется и также запоминается в накопителе. Однако получателю сообщение передается не сразу: сначала оно поступает через обратный канал на пункт управления. В схеме сравнения ПУ происходит сравнение принятого сообщения с переданным. Если сообщения совпадают, то формируется сигнал «Подтверждение» и происходит передача последующих сообщений (иногда перед посылкой последующего сообщения на КП сначала посылается сигнал «Подтверждение» о том, что предыдущее сообщение было принято верно и с накопителя можно передать информацию получателю). При несовпадении сообщений, что свидетельствует об ошибке, формируется сигнал «Стирание». Этот сигнал запирает ключ для прекращения передачи очередного сообщения и посылается на КП для уничтожения записанного в накопителе сообщения. После этого с ПУ производится повторная передача сообщения, записанного в накопителе.

Рис.1.1а. Способ передачи информации с ИОС.

В системах с ИОС ведущая роль принадлежит передающей части, так как она определяет наличие ошибки, приемник только информирует передатчик о том, какое сообщение им получено. Имеются различные варианты передачи с ИОС. Так, существуют системы с ИОС, в которых передача сигналов происходит непрерывно и прекращается лишь при обнаружении ошибки: передатчик посылает сигнал «Стирание» и повторяет передачу. Системы с ИОС, в которых по обратному каналу передается вся информация, переданная на КП, называются системами с ретрансляционной обратной связью. В некоторых системах с ИОС передается не вся информация, а только некоторые характерные сведения о ней (квитанции). Например, по прямому каналу передаются информационные, а по обратному каналу -- контрольные символы, которые будут сравниваться на передатчике с предварительно записанными контрольными символами. Имеется вариант, в котором после проверки принятого по обратному каналу сообщения и обнаружения ошибки передатчик может либо повторить его (дублирование сообщения), либо послать дополнительную информацию, необходимую для исправления (корректирующая информация). Число повторений может быть ограниченным или неограниченным.

Обратный канал используют для того, чтобы определить, необходима ли повторная передача информации. В системах с ИОС повышение достоверности передачи достигается путем повторения информации только при наличии ошибки, тогда как в системах без обратной связи (при передаче с накоплением) повторение осуществляется независимо от искажения сообщения. Поэтому в системах с ИОС избыточность информации значительно меньше, чем в системах с ПБОС: она минимальна при отсутствии искажений и увеличивается при ошибках. В системах с ИОС качество обратного канала должно быть не хуже качества прямого во избежание искажений, которые могут увеличить число повторений.

Передача с решающей обратной связью (РОС). Переданное с передатчика по прямому каналу сообщение принимается на приемнике (рис.1.1б), где оно запоминается и проверяется в декодирующем устройстве (декодере). Если ошибок нет, то из накопителя сообщение поступает к получателю информации, а через обратный канал на передатчик подается сигнал о продолжении дальнейшей передачи (сигнал продолжения). Если ошибка обнаружена, то декодер выдает сигнал, стирающий информацию в накопителе. Получателю сообщение не поступает, а через обратный канал на передатчик подается сигнал о переспросе или повторении передачи (сигнал повторения или переспроса). На передатчике сигнал повторения (иногда называемый решающим сигналом) выделяется приемником решающих сигналов, а переключающее устройство отключает вход кодера от источника информации и подключает его к накопителю, что позволяет повторить переданное сообщение. Повторение сообщения может происходить несколько раз до его правильного приема.

Рис.1.1б. Способ передачи информации с РОС.

При передаче с РОС ошибка определяется приемником. Для этого передаваемое сообщение должно кодироваться обязательно помехозащищенным кодом, что позволяет приемнику выделить разрешенную комбинацию (сообщение) из неразрешенных. Это означает, что передача с РОС осуществляется с избыточностью. Достоверность передачи в системах РОС определяется выбором кода и защитой решающих сигналов повторения и продолжения. Последнее не представляет особых трудностей, так как эти сигналы несут одну двоичную единицу информации и могут передаваться достаточно помехоустойчивым кодом.

Системы с РОС, или системы с переспросом, подразделяют на системы с ожиданием решающего сигнала и системы с непрерывной передачей информации.

В системах с ожиданием передача новой кодовой комбинации или повторение переданной происходит только после поступления на передатчик сигнала запроса.

В системах с непрерывной передачей происходит непрерывная передача информации без ожидания сигнала запроса. Скорость передачи при этом выше, чем в системах с ожиданием. Однако после обнаружения ошибки по обратному каналу посылается сигнал переспроса и за время прихода на передатчик с последнего уже будет передано какое-то новое сообщение. Поэтому системы с непрерывной передачей необходимо усложнять соответствующей блокировкой приемника, чтобы он не принимал информацию после обнаружения ошибки.

Для сравнения эффективности системы без обратной связи, в которой применяется код Хэмминга с исправлением одной ошибки, и системы с РОС, использующей простой код, вводят понятие коэффициента эффективности. Этот коэффициент учитывает уменьшение вероятности ошибочного приема и затраты на его достижение, выигрыш в защите от ошибок (в случае применения указанных кодов), относительное снижение скорости передачи и схемную избыточность, связанные с использованием разных кодов. Итоговое сравнение показало, что в отличие от системы без обратной связи, использующей сложный код, система с РОС дает выигрыш в 5,1 раза. Высокая эффективность систем с РОС обеспечила их широкое распространение.

Сравнительный анализ достоверности передачи систем с ИОС и РОС, показал, что:

1) системы с ИОС и РОС обеспечивают одинаковую достоверность передачи при одинаковых суммарных затратах энергии сигналов в прямом и обратном каналах при условии, что эти каналы симметричны и имеют одинаковый уровень помех;

2) системы с ИОС обеспечивают более высокую достоверность передачи, чем Системы с РОС при относительно слабых помехах в обратном канале в отличие от прямого. При отсутствии помех в обратном канале системы с ИОС обеспечивают безошибочную передачу сообщений по основному каналу;

3) при сильных помехах в обратном канале более высокую достоверность обеспечивают системы с РОС;

4) при пачках ошибок в прямом и обратном каналах более высокую достоверность обеспечивают системы с ИОС.

1.1 Акустическая информация К защищаемой речевой (акустической) информации относится информация, являющаяся предметом собственности и подлежащая защите в соответствии с требованиями правовых документов или требованиями...

Защита акустической (речевой) информации от утечки по техническим каналам

Защита акустической (речевой) информации от утечки по техническим каналам

Генераторы пространственного зашумления Генератор шума ГРОМ-ЗИ-4 предназначен для защиты помещений от утечки информации и предотвращения съема информации с персональных компьютеров и локальных вычислительных сетей на базе ПК...

Методы защиты информации

Методы защиты информации в телекоммуникационных сетях

Угрозу отождествляют обычно либо с характером (видом, способом) дестабилизирующего воздействия на информацию, либо с последствиями (результатами) такого воздействия. Однако такого рода термины могут иметь много трактовок...

Методы сбора и обработки цифровых сигналов

Передача данных -- физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу передачи данных, как правило...

Моделирование объекта защиты

3.1 Утечка информации через строительные конструкции и инженерно-технические системы Для обеспечения защиты помещения от данной угрозы можно применить как метод пассивной защиты (звукопоглощающие материалы)...

Определение состава системы передачи информации

Сигнал на выходе аппаратуры ПТИ представляет собой, как правило, сигнал кодоимпульсной формы, спектр частот которого в общем случае бесконечный...

Организация работ по строительству волоконно-оптической линии связи (ВОЛС)

Возможность передачи информации по волоконно-оптическим линиям появилась благодаря переложению квантовой теории света на его распространение в прозрачных однородных средах...

3.1 Анализ возможности передачи конфиденциальной информации по квантовым каналам связи При переходе от сигналов, где информация кодируется импульсами, содержащими тысячи фотонов, к сигналам, где среднее число фотонов...

Передача информации по квантовым каналам связи

Примером протокола исправления ошибок является способ коррекции ошибок, состоящий в том, что блок данных, который должен быть согласован между пользователями, рассматривается как информационный блок некоторого кода...

Проектирование и программная реализация комплексной системы стрелочных переводов

Канал связи представляет собой тракт связи, который начинается с информационного источника, проходит через все этапы кодирования и модулирования, передатчик, физический канал...

Проектирование магистральной волоконно-оптической системы передачи с повышенной пропускной способностью

Развитие телекоммуникаций идет ускоренными темпами. Получили широкое развитие современные цифровые технологии передачи данных, к которым можно отнести ATM, Frame Relay, IP, ISDN, PCM, PDH, SDH и WDM. Причем такие технологии, как АТМ, ISDN, PCM, PDH...

Расчет надежности работы атмосферной оптической линии связи

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи...


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

(6)

где V = 1/ – средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.

Каналом передачи информации называют совокупность технических средств, обеспечивающую передачу электрических сигналов от одного пункта к другому. Входы канала подключаются к передатчику, а выходы - к приемнику. В современных цифровых системах связи основные функции передатчика и приемника выполняет модем. Одной из главных характеристик канала является скорость передачи информации. Максимально возможная скорость передачи информации (данных) по каналу связи при фиксированных ограничениях называется емкостью канала, обозначается через С и имеет размерность бит/с. В общем случае емкость канала можно определить по формуле: (8.22) где I- количество переданной за время Т информации. В качестве меры количества информации возьмем меру Р. Хартли определяемую как логарифм возможных состояний объекта Ь. (8.23) Для нахождения I воспользуемся теоремой Котельникова, которая доказывает, что сигнал, не содержащий в своем спектре частот выше Р, может представляться 2Р независимыми значениями в секунду, совокупность которых полностью определяет этот сигнал. Данная процедура, называемая аналого-цифровым преобразованием, была рассмотрена в гл. 6. Она состоит из двух этапов - дискретизации по времени, т. е. представлении сигнала в виде п отсчетов, взятых через интервал времени 1 = 1/(2Р), и квантования по уровню, т. е. представления амплитуды сигнала одним из т возможных значений. Определим количество различных сообщений, которое можно составить из п элементов, принимающих любые из т различных фиксированных состояний. Из ансамбля п элементов, каждый из которых может находиться в одном из т фиксированных состояний, можно составить т а различных комбинаций, т. е. 1= т". Тогда: (8.24) За время Тчисло отсчетов п= Г/1=2РГ. Если бы шума не существовало, то число т дискретных уровней сигнала было бы бесконечным. В случае наличия шума последний определяет степени различимости отдельных уровней амплитуды сигнала. Так как мощность является усредненной характеристикой амплитуды, число различимых уровней сигнала по мощности равно (Р е +Р ш)/Р ш), а по амплитуде соответственно: Тогда емкость канала: (8.25) Итак, емкость канала ограничивается двумя величинами: шириной полосы канала и шумом. Соотношение (8.25) известно как формула Хартли-Шеннона и считается основной в теории информации. Полоса частот и мощность сигнала входят в формулу таким образом, что для С= const при сужении полосы необходимо увеличивать мощность сигнала, и наоборот. К основным характеристикам каналов связи относятся: ■ амплитудно-частотная характеристика (АЧХ); ■ полоса пропускания; ■ затухание; * пропускная способность; ■ достоверность передачи данных; ■ помехоустойчивость. Для определения характеристик канала связи применяется анализ его реакции на некоторое эталонное воздействие. Чаще всего в качестве эталона используются синусоидальные сигналы разных частот. АЧХ показывает, как изменяется амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех частот передаваемого сигнала. Полоса пропускания - это диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заданный предел (для мощности 0.5). Эта полоса частот определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Ширина полосы пропускания влияет на максимально возможную скорость передачи информации по линии связи. Затухание - определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии связи сигнала определенной частоты. Затухание I обычно измеряется в децибелах (дБ) и вычисляется по формуле: где Р вых - мощность сигнала на выходе линии; Р вх - мощность сигнала на входе линии. Пропускная способность линии (throughput) характеризует максимально возможную скорость передачи данных по линии связи и измеряется в битах в секунду (бит/с), а так же в производных единицах Кбит/с, Мбит/с, Гбит/с. На пропускную способность линии оказывает влияние физическое и логическое кодирование. Способ представления дискретной информации в виде сигналов, передаваемых на линию связи, называется физическим линейным кодированием. От выбранного способа кодирования зависит спектр сигнала и соответственно пропускная способность линии. Таким образом, для одного или другого способа кодирования линия может иметь разную пропускную способность. Если сигнал изменяется так, что можно различить только два его состояния, то любое его изменение будет соответствовать наименьшей единице информации - биту. Если сигнал изменяется так, что можно различить более двух состояний, то любое его изменение несет несколько бит информации. Количество изменений информационного параметра несущего колебания (периодического сигнала) в секунду измеряется в бодах. Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод. Она может быть как выше, так и ниже числа бод, и это соотношение зависит от способа кодирования. Если сигнал имеет более двух различимых состояний, то пропускная способность в бит/с будет выше, чем число бод. Например, если информационными параметрами являются фаза и амплитуда синусоиды, причем различают 4 состояния фазы (О, 90, 180 и 270) и два значения амплитуды, то информационный сигнал имеет восемь различимых состояний. В этом случае модем, работающий со скоростью 2400 бод (с тактовой частотой 2400 Гц), передает информацию со скоростью 7200 бит/с, так как при одном изменении сигнала передается три бита информации. При использовании сигнала с двумя различными состояниями может наблюдаться обратная картина. Это происходит, когда для надежного распознавания приемником информации каждый бит в последовательности кодируется с помощью нескольких изменений информационного параметра несущего сигнала. Например, при кодировании единичного значения бита импульсом положительной полярности, а нолевого значения бита - импульсом отрицательной полярности, сигнал дважды меняет свое состояние при передаче каждого бита. При таком способе кодирования пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии. На пропускную способность оказывает влияние логическое кодирование, которое выполняется до физического и подразумевает замену бит исходной информации новой последовательности бит, несущей ту же информацию, но обладающей при этом дополнительными свойствами (обнаруживающие коды, шифрование). При этом искаженная последовательность бит заменяется более длинной последовательностью, поэтому пропускная способность канала уменьшается. В общем случае связь между полосой пропускания линии и ее максимально возможной пропускной способностью определяется соотношением (8.25). Из этого соотношения следует, что хотя теоретического предела увеличения пропускной способности линии (с фиксированной полосой пропускания) нет, на практике такой предел существует. Повысить пропускную способность линии можно, увеличив мощность передатчика или уменьшая мощность помех. Однако увеличение мощности передатчика приводит к росту его габаритов и стоимости, а уменьшение шума требует применения специальных кабелей с хорошими защитными экранами и снижения шума в аппаратуре связи. Емкость канала представляет собой максимальную величину скорости. Чтобы достигнуть такой скорости передачи, информация должна быть закодирована наиболее эффективным образом. Утверждение, что такое кодирование возможно, является важнейшим результатом созданной Шенноном теории информации. Шеннон доказал принципиальную возможность такого эффективного кодирования, не определив, однако, конкретных путей его реализации. (Отметим, что на практике инженеры часто говорят о емкости канала, подразумевая под этим реальную, а не потенциальную скорость передачи.) Эффективность систем связи характеризуется параметром, равным скорости передачи информации Я на единицу ширины полосы Г, т. е. Я/Р. Для иллюстрации существующих возможностей по созданию эффективных систем связи на рис. 8.12 приведены графики зависимости эффективности передачи информации при различных видах М-ичной дискретной амплитудной, частотной и фазовой модуляции (кроме бинарной модуляции используется также модуляция с 4, 8, 16 и даже с 32 положениями модулируемого параметра) от отношения энергии одного бита к спектральной плотности мощности шума (Ео/Мо). Для сравнения показана также граница Шеннона. Сравнение кривых показывает, в частности, что наиболее эффективной оказывается передача с фазовой дискретной модуляцией, однако при неизменном отношении сигнал-шум наиболее популярный вид модуляции 4ФМн в три раза хуже потенциально достижимого. Достовернсть передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Показателем достоверности является вероятность ошибочного приема информационного символа - Р. 1 ОШ Рис. 8.12. Эффективность цифровых систем связи: 1 - граница Шеннона; 2 - М-ичная ФМн; 3 - М-ичная АМн; 4 - М-ичная ЧМн Величина Р ош для каналов связи без дополнительных средств защиты от ошибок составляет, как правило, 10 4 ... 10 6 . В оптоволоконных линиях связи Р ош составляет 10" 9 . Это значит, что при Р ош = 10 4 в среднем из 10 000 бит искажается значение одного бита. Искажения бит происходят как из-за наличия помех на линии, так и из-за искажений формы сигнала, ограниченной полосой пропускания линии. Поэтому для повышения достоверности передаваемых данных необходимо повышать степень помехозащищенности линий, а также использовать более широкополосные линии связи. Непременной составной частью любого канала является линия связи - физическая среда, обеспечивающая поступление сигналов от передающего устройства к приемному. В зависимости от среды передачи данных линии связи могут быть: ■ проводные (воздушные); ■ кабельные (медные и волоконно-оптические); ■ радиоканалы наземной и спутниковой связи (беспроводные каналы связи). Проводные линии связи представляют собой проложенные между опорами провода без каких-либо экранирующих или изолирующих оплеток. Помехозащищенность и скорость передачи данных в этих линиях низкая. По таким линиям связи передаются, как правило, телефонные и телеграфные сигналы. 8.3.1.