Самодельные блоки питания 0 30 вольт. Блок питания. Самодельный регулированный блок на одном транзисторе

Простейший блок питания 0-30 Вольт для радиолюбителя.

Схема.

В этой статье мы продолжаем тему схемотехники блоков питания для радиолюбительских лабораторий. На сей раз речь пойдет о самом простом устройстве, собранном из радиодеталей отечественного производства, и с минимальным их количеством.

И так, принципиальная схема блока питания:



Как видите, все просто и доступно, элементная база имеет широкое распространение и не содержит дефицитов.

Начнем с трансформатора. Мощность его должна быть не менее 150 Ватт, напряжение вторичной обмотки - 21…22 Вольта, тогда после диодного моста на емкости С1 вы получите порядка 30 Вольт. Рассчитывайте так, чтобы вторичная обмотка могла обеспечивать ток 5 Ампер.

После понижающего трансформатора стоит диодный мост, собранный на четырех 10-ти амперных диодах Д231. Запас по току конечно хороший, но конструкция получается довольно громоздкая. Наилучшим вариантом будет использование импортной диодной сборки типа RS602, при небольших габаритах она рассчитана на ток 6 Ампер.

Электролитические конденсаторы рассчитаны на рабочее напряжение 50 Вольт. С1 и С3 можно ставить от 2000 до 6800 мкФ.

Стабилитрон Д1 - он задает верхний предел регулировки выходного напряжения. На схеме мы видим надпись Д814Д х 2 , это значит, что Д1 состоит из двух последовательно соединенных стабилитронов Д814Д. Напряжение стабилизации одного такого стабилитрона составляет 13 Вольт, значит два последовательно соединенных дадут нам верхний предел регулировки напряжения 26 вольт минус падение напряжения на переходе транзистора Т1. В результате вы получите плавную регулировку от нуля до 25 вольт.
В качестве регулирующего транзистора в схеме применен КТ819, они выпускаются в пластиковых и металлических корпусах. Расположение выводов, размеры корпусов и параметры этого транзистора смотрите на следующих двух изображениях.


Данный лабораторный блок питания своими руками построен по типовой схеме, правда, с не совсем стандартным подключением регулятора напряжения LM723. В результате подобного подключения удалось добиться того что на выходе блока питания нижний уровень выходного напряжения составляет всего 30 мВ, что фактически можно считать нулем.

Описание мощного лабораторного блока питания на LM723

Технические показатели лабораторного блока питания

  • Напряжение выходное: 0 — 30 вольт.
  • Максимальный ток нагрузки: 4 ампер.

Транзистор VT2 рекомендуется применить составной. Сопротивлением R10 выставляется верхний уровень выходного напряжения. Блок защиты от короткого замыкания построен на транзисторах разной проводимости и, по сути, являются альтернативой тиристору. Сопротивлением R1 устанавливают порог защиты от перегрузки по току. В отдельных случаях возможно придется подобрать сопротивление R4.

Сопротивление R4 – мощностью 5 ватт на 0,22 Ом. Блок защиты предохраняет лабораторный блок питания, как от короткого замыкания, так и от перегрузки по току. Сопротивление R8 применяется с линейной зависимостью.

СОБИРАЕМ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-30V / 0-3A.

Многим радиолюбителям знакома эта схема лабораторного источника питания, она обсуждаема на многих радиолюбительских форумах и пользуется спросом не только в России, но и за рубежом. Но не смотря на ее популярность и положительные отзывы мы не смогли найти готовую печатную плату в LAY формате, может плохо искали а может не достаточно приложили усилий к поиску, поэтому решили устранить этот пробел. Для начала напомним, что данный блок питания имеет регулировку выходного напряжения диапазон которого 0...30 Вольт, вторым регулятором можно задать порог ограничения выходного тока, диапазон регулировки 2mA...3A, это обеспечивает не только защиту самого блока питания от КЗ на выходе и перегрузки, но и того устройства которое вы налаживаете. Данный источник обладает малыми пульсациями выходного напряжения, они не превышают 0,01%. Принципиальная схема лабораторного БП приведена ниже:

Решив не изобретать печатную плату с нуля, мы воспользовались изображением платы, которую уже не раз повторяли многие радиолюбители, вид исходников такой:

После преобразования данных картинок в LAY формат вид платs стал следующий:

Фото-вид LAY6 формата и вид расположения элементов:

Список элементов для повторения схемы лабораторного блока питания:

Резисторы (у которых мощность не указана – все на 0,25 Ватта):

R1 – 2k2 1W – 1 шт.
R2 – 82R – 1 шт.
R3 – 220R – 1 шт.
R4 – 4k7 - 1 шт.
R5, R6, R13, R20, R21 – 10k – 5 шт.
R7 – 0R47 5W – 1 шт. (уменьшение номинала до 0R25 увеличит диапазон регулировки до 7...8 Ампер)
R8, R11 – 27k – 2 шт.
R9, R19 – 2k2 – 2 шт.
R10 – 270k – 1 шт.
R12, R18 – 56k – 2 шт.
R14 – 1k5 – 1 шт.
R15, R16 – 1k – 1 шт.
R17 – 33R – 1 шт.
R22 – 3k9 – 1 шт.

Переменные/подстроечные резисторы:

RV1 – 100k – подстроечный резистор – 1 шт.
P1, P2 – 10k (с линейной характеристикой) – 2 шт.

Конденсаторы:

C1 – 3300...1000mF/50V (электролит) – 1 шт.
C2, C3 – 47mF/50V (электролит) – 2 шт.
C4 – 100n (полиэстер) – 1 шт.
C5 – 200n (полиэстер) – 1 шт.
C6 – 100pF (керамика) – 1 шт.
C7 – 10mF/50V (электролит) – 1 шт. (Лучше заменить на 1000mF/50V)
C8 – 330pF (керамика) – 1 шт.
C9 – 100pF (керамика) – 1 шт.

Диоды/стабилитроны:

D1, D2, D3, D4 – 1N5402 (1N5403, 1N5404) – 4 шт. (Или подкорректировать плату LAY6 под установку диодной сборки)
D5, D6, D9, D10 – 1N4148 – 4 шт.
D7, D8 – Zener 5V6 (стабилитрон на напряжение 5,6 Вольта) – 2 шт.
D11 – 1N4001 – 1 шт.
D12 – LED – светодиод – 1 шт.

Микросхемы:

U1, U2, U3 – TL081 – 3 шт.

Транзисторы:

Q1 – NPN BC548 (BC547) – 1 шт.
Q2 – NPN 2N2219 (BD139, отечественный КТ961А) – 1 шт. (При замене на BD139 не перепутайте цоколевку, при установке его на плату ноги перекрещиваются)
Q3 – PNP BC557 (BC327) – 1 шт.
Q4 – NPN 2N3055 – 1 шт. (А лучше применить отечественный КТ827, причем установить его на внушительный радиатор)

Напряжение вторичной обмотки трансформатора 25 Вольт, ток вторички и мощность транса выбирайте в зависимости от того, каие параметры хотите иметь на выходе. Для расчета трансформатора можно воспользоваться программой из статьи:

В поисках информации по данной схеме мы все-таки нашли один вариант печатной платы в LAY формате на одном из форумов, ее разработал DRED. Отличительной особенностью этого варианта является то, что она изначально заточена на применение транзистора BD139, поэтому перекручивать ноги у этого элемента при установке не нужно. Вид платы LAY6 формата следующий:

Фото-вид платы DRED-варианта:

Плата односторонняя, размер 75 х 105 мм.

Но на этом наша статья не заканчивается. На одном из буржуйских сайтов мы нашли еще один вариант печатной платы данного блока питания. Дорожки немного тоньше, расположение элементов чуток компактнее и потенциометры регулировки тока стабилизации и напряжения располагаются непосредственно на печатке. Используя исходные изображения мы сваяли лейку, прада внесли некоторые незначительные изменения. LAY6 формат платы БП выглядит так:

Фото-вид и расположение элементов:

Плата односторонняя, размер 78 х 96 мм, схема та же, номиналы элементов те же. Ну и напоследок пара снимков собранных лабораторных блоков питания по данной схеме:

Плата в сборе по второму варианту печатной платы:

Не экономьте на размере радиатора, выходник греется, дополнительный обдув лишним не будет.
Блок питания 100% повторяем, и надеемся что полученной информации будет достаточно для его изготовления. Все материалы в архиве, размер – 1,85 Mb.

Сколько всяких интересных радиоустройств собирают радиолюбители, но основа, без которой не будет работать практически ни одна схема - блок питания. От чего только не пытаются запитывать начинающие мастера свои устройства - батарейки, китайские адаптеры, зарядки от мобильных телефонов... И часто до сборки приличного блока питания просто не доходят руки. Конечно промышленность выпускает достаточно качественных и мощных стабилизаторов напряжения и тока, однако не везде они продаются и не у всех есть возможность их купить. Проще спаять своими руками.

Предлагаемая схема простого (всего 3 транзистора) блока питания выгодно отличается точностью поддержания выходного напряжения - тут применена компенсационная стабилизация, надёжностью запуска, широким диапазоном регулировки и дешёвыми недефицитными деталями. Печатная плата в формате Lay - .


После правильной сборки работает сразу, только подбираем стабилитрон согласно требуемому значению максимального выходного напряжения БП.


Корпус делаем из того, что под рукой. Классический вариант - металлическая коробочка от компьютерного БП ATX. Уверен, каждый имеет их немало, так как иногда они сгорают, а купить новый проще, чем чинить.


В корпус прекрасно влазит трансформатор на 100 ватт, и плате с деталями найдётся место.


Кулер можно оставить - лишним не будет. А чтоб не шумел, просто питаем его через токоограничительный резистор, который подберёте экспериментально.


Для передней панели не поскупился и купил пластиковую коробочку - в ней очень удобно делать отверстия и прямоугольные окна для индикаторов и регуляторов.


Амперметр берём стрелочный - чтоб хорошо были видны броски тока, а вольтметр поставил цировой - так удобнее и красивее!


После сборки регулируемого блока питания проверяем его в работе - он должен давать почти полный ноль при нижнем (минимальном) положении регулятора и до 30В - при верхнем. Подключив нагрузку пол ампера - смотрим на просадку выходного напряжения. Она должна быть тоже минимальной.


В общем, при всей своей кажущейся простоте, данный блок питания наверное один из лучших по своим параметрам. При необходимости можно добавить в него узел защиты - пару лишних транзисторов. Как это делается смотрите на форуме. Схему собрал и испытал - Mars.

Обсудить статью БЛОК ПИТАНИЯ 0-30В

Данную схему я взял в интернете, много лет назад. Причина, по которой я решил ее выложить - в оригинале есть ошибки, которые я исправил. Поэтому, можете смело брать схему и делать этот блок питания. У меня он работает уже на протяжении четырех лет.

Данный блок питания построен на распространенной радио элементной базе и не содержит дефицитных деталей. Особенностью блока является то, что регулируемая микросхема DA4 не требует двух полярного питания. На микросхеме DA1 введена плавная регулировка выходного тока в интервале 0 … 3А (согласно схеме). Этот предел можно расширить и до 5А, пересчитав резистор R4. В авторском варианте резистор R7 заменен на подстроечный, т.к. плавная регулировка тока не требовалась. Ограничение тока при установленных номиналах деталей наступает при токе 3,2А и выходное напряжение упадет до 0. Ограничение тока подбирается резистором R7. Во время ограничения тока включается светодиод HL1, сигнализируя о коротком замыкании в нагрузке блока питания или превышении выбранного значения тока резистором R7. Если резистором R7 выбран порог срабатывания 1,5А, то при превышении данного порога на выходе микросхемы появиться низкое напряжение (-1,4В) и на базе транзистора VT2 установится 127мВ. Напряжение на выходе блока питания становиться равным » 1мкВ, что для большинства радиолюбительских задач нормально, а на блоке индикации напряжения будет стоять 00,0 вольт. Светодиод HL1 будет светиться. При нормальной работе узла перегрузки по току на базе микросхемы DA1 будет напряжение 5,5В и диод HL1 светиться не будет.

Характеристики блока питания следующие:

Выходное напряжение регулируется от 0 до 30 В.

Выходной ток 4А.

Работа микросхемы DA4 особенностей не имеет и работает она в режиме однополярного питания. На ножку 7 подается 9В, ножка 4 соединена с общей шиной. В отличие от большинства микросхем серии 140УД… добиться нулевого уровня на выходе блока питания при таком включении весьма трудновато. Экспериментальным путем выбор сделан на микросхему КР140УД17А. При таком схемном решении удалось получить на выходе блока питания напряжение 156 мкВ, что на индикаторе будет отображаться как 00,0В.

Конденсатор С5 предотвращает возбуждение блока питания.

При исправных деталях и безошибочном монтаже блок питания начинает работать сразу. Резистором R12 установлен верхний уровень выходного напряжения, в пределах 30,03В. Стабилитрон VD5 применен для стабилизации напряжения на регулирующем резисторе R16 и, если блок питания работает без сбоев, от стабилитрона можно отказаться. Если резистор R7 применен как подстроечный, то им устанавливают порог срабатывания при превышении максимального тока.

Транзистор VT1 устанавливается на радиатор. Площадь радиатора рассчитывается по формуле: S = 10In*(Uвх. - Uвых.), где S - площадь поверхности радиатора (см 2); In - максимальный ток потребляемый нагрузкой; Uвх. - входное напряжение (В); Uвых. - выходное напряжение (В).

Схема блока питания показана на рис.1, печатная плата на рисунках 2 и 3.

То, что выделено красным, ошибки, которые я исправил. Если так не сделать схема не работает.

Резисторы R7 и R12 многооборотные СП5-2. Вместо диодной сборки RS602 можно применить диодную сборку RS407, RS603, в зависимости от тока потребления, или диоды 242 с любым буквенным индексом, но разместить их надо отдельно от печатной платы. Входное напряжение на конденсаторе C1 может варьироваться в пределах 35… 40В без изменения номиналов деталей. Трансформатор Т1 должен быть рассчитан на мощность не менее 100 Вт, ток обмотки II не менее 5 А при напряжении 35 … 40 В. Ток обмотки III не менее 1 А. Обмотка III ДОЛЖНА (иначе схема работать не будет, это одна из ошибок) быть с отводом от середины, который подключается к общей шине блока питания. В печатной плате предусмотрена для этой цели контактная площадка. Размер печатной платы блока питания 110 х 75 мм. Транзистор КТ825 составной и стоит он немало, поэтому его можно заменить транзисторами, как показано на рисунке 4.

Транзисторы могут быть с буквенными индексами Б - Г, соединенных по схеме Дарлингтона.

Резистор R4 - отрезок нихромовой проволоки диаметром 1мм и длиной около 7см (подбирается экспериментально). Микросхемы DA2, DA3 и DA5 допустимо заменить отечественными аналогами К142ЕН8А, КР1168ЕН5 и К142ЕН5А. Если панель цифровой индикации применяться не будет, то вместо микросхемы DA2 можно применить КР1157ЕН902 , а микросхему DA5 исключить. Резистор R16 переменный с зависимостью группы А. В авторском варианте применен переменный резистор ППБ-3А номиналом 2,2К - 5% .

Если не предъявлять к узлу защиты больших требований, а требоваться он будет только для защиты блока питания от перегрузки по току и КЗ, то такой узел можно применить по схеме на рис.6, а печатную плату немного переработать.

Узел защиты собран на транзисторах VT1 и VT2 разной структуры, резисторах R1 - R3 и конденсаторе С1. Ток короткого замыкания 16мА. Резистором R1 регулируют порог срабатывания защитного блока. При нормальной работе блока на эмиттере транзистора VT2 напряжение порядка 7 В и на работу блока питания влияния не оказывает. При срабатывание защиты напряжение на эмиттере транзистора VT2 падает до 1,2 В и через диод VD4 подается на базу транзистора VT2 блока питания. Напряжение на выходе блока питания падает до 0 В. и Светодиод HL1 сигнализирует о срабатывании защиты. При нормальной работе блока питания и узла защиты светодиод - горит, при срабатывании защиты - гаснет. При использовании узла защиты на рис.6 микросхему DA3 и конденсаторы С3, С5 можно из схемы исключить.

Цифровая панель служить для визуального контроля напряжения и тока блока питания. Она может быть использована отдельно от блока питания с другими конструкциями, выполняя вышеназванные задачи.

Вольтметр и амперметр я взял отсюда .

Вот несколько фото моего блока питания, на которых видно, что я еще прикрепил вентилятор для охлаждения, питания которого, я взял с третьей обмотки трансформатора, предварительно намотав ее с этим расчетом.

(для увеличения кликните по изображениям)

Александр, благодарен вам за проделаную работу!