Конденсаторы.Електроемкость. презентация к уроку по физике (10 класс) на тему. Презентация на тему типы конденсаторов и их применение Скачать презентацию по физике на тему конденсатор

«Конденсатор физика» - Виды конденсаторов. - Бумажный конденсатор - слюдяной конденсатор электролитический конденсатор. Воздушный конденсатор. Соединения конденсаторов. - Воздушный конденсатор. Определение конденсатора. При подключении электролитического конденсатора необходимо соблюдать полярность. Назначение конденсаторов.

«Использование конденсаторов» - Опыты с конденсатором. Конденсатор используется в схемах зажигания. Формулы энергии. Применение конденсаторов. Особенности применения конденсаторов. Конденсатор используется в медицине. Светильники с разрядными лампами. Емкостная клавиатура. Конденсатор. Мобильные телефоны. Применяется в телефонии и телеграфии.

«Электроемкость и конденсаторы» - В клавиатуре компьютера. Конденсатор переменной емкости. Соединение конденсаторов. Электроемкость. Последовательное. Фотовспышки. Схемы соединения конденсаторов. Обозначение на электрических схемах: Конденсаторы. Электроемкость плоского конденсатора. Все электрическое поле сосредоточено внутри конденсатора.

«Применение конденсаторов» - Для аккумуляторов последних время регенерации принципиально важно. Полимерные конденсаторы с твёрдым электролитом на чипсете. Схема телефонного «жучка». Схема выпрямителя тока. Конденсатор CTEALTG STC - 1001. Микрофон конденсаторный. Удачная ассоциация есть на сайте Sciencentral. Студийный конденсаторный направленный микрофон широкого применения.

«Конденсатор» - Емкость конденсатора. Отношение заряда. Энергия конденсатора. Конденсатор переменной емкости. Бумажный конденсатор. Площадь. Конденсатор. Применение конденсаторов. Урок физики в 9 классе

Применение конденсаторов

В радиотехнической и
телевизионной
аппаратуре
В радиолокационной
технике
В современной технике конденсаторы
находят себе исключительно широкое
и разностороннее применение,
прежде всего в областях электроники.
В лазерной технике
В электроизмерительной
технике
В телефонии и
телеграфии
В автоматике и
телемеханике
В технике счетнорешающих устройств

1. В радиотехнической и телевизионной аппаратуре –
для создания колебательных контуров, их настройки,
блокировки, разделения цепей с различной частотой, в
фильтрах выпрямителей и т.д.

2.В радиолокационной технике – для получения
импульсов большей мощности, формирования
импульсов и т.д.

3.В телефонии и телеграфии – для разделения цепей переменного и
постоянного токов, разделения токов различной частоты,
искрогашения в контактах, симметрирования кабельных линий и т.д.

4. В автоматике и телемеханике – для создания
датчиков на емкостном принципе, разделения цепей
постоянного и пульсирующего токов, искрогашения в
контактах, в схемах тиратронных генераторов
импульсов и т.д.

5. В технике счетно-решающих устройств – в
специальных запоминающих устройствах и т.д.

6. В электроизмерительной технике – для создания
образцов емкости, получения переменной емкости
(магазины емкости и лабораторные переменные
конденсаторы), создания измерительных приборов на
емкостном принципе и т. д.

7. В лазерной технике

В современной электроэнергетике конденсаторы находят себе также
весьма разнообразное и ответственное применение:
1.Для улучшения коэффициента мощности и промышленных установок
(косинусные или шунтовые конденсаторы);
2.Для продольной емкости компенсации дальних линий передач и для
регулирования напряжения в распределительных сетях (серийные
конденсаторы);
3.Для емкостного отбора энергии от линий передач высокого напряжения и
для подключения к линиям передач специальной аппаратуры связи и
защитной аппаратуры (конденсаторы связи);
4.Для защиты от перенапряжений.

В
металлопромыш
ленности
В добывающей
промышленности
Конденсаторы применяют и в других
неэлектротехнических областях техники
и промышленности для следующих
основных целей
В
автотракторной
технике
В
медицинской
технике

1. В металлопромышленности - в высокочастотных
установках для плавки и термической обработки металлов, в
электроэрозионных (электроискровых) установках, для
магнитоимпульсной обработки металлов и т.д.

2. В добывающей промышленности (угольной,
металлорудной и т.п.) – в рудничном транспорте на
конденсаторных электровозах нормальной и
повышенной частоты (бесконтактных), в
электровзрывных устройствах с использованием
электрогидравлического эффекта и т.д.

3. В автотракторной технике – в схемах зажигания для
искрогашения в контактах и для подавления
радиопомех

4. В медицинской технике – в рентгеновской
аппаратуре, в устройствах электротерапии и т.д.

Cлайд 1

Выполнил: Каретко Дима, ученик 10 «А» Руководитель: Попова Ирина Александровна, учитель физики Белово 2011 Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа № 30 г. Белово» Конденсаторы Миипроект по физике

Cлайд 2

План Введение Конденсаторы Основные параметры конденсатора Классификация конденсаторов Применение конденсаторов Вывод Литература

Cлайд 3

Введение Систему проводников очень большой электроемкости вы можете обнаружить в любом радиоприемнике или купить в магазине. Называется она конденсатором. Сейчас вы узнаете, как устроены подобные системы и от чего зависит их электроемкость.

Cлайд 4

Конденсаторы Конденсатор - двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля.

Cлайд 5

Основные параметры конденсатора: 1)Ёмкость: в обозначении конденсатора фигурирует ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость- определяет по электрическим свойствам. 2)Удельною емкостью называют отношением ёмкости к объёму (или массе) диэлектрика. 3) Номинальное напряжение - значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. 4)Полярность: многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком.

Cлайд 6

Классификация конденсаторов Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме). Конденсаторы с газообразным диэлектриком. Конденсаторы с жидким диэлектриком. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические), слюдяные, тонкослойные из неорганических плёнок. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные. Электролитические и оксидно-полупроводниковые конденсаторы (Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью). Постоянные конденсаторы - основной класс конденсаторов, не меняющие своей ёмкости. Переменные конденсаторы - конденсаторы, которые допускают изменение ёмкости. Подстроечные конденсаторы - конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке.

Cлайд 7

Применение конденсаторов Конденсаторы используются для построения различных цепей с частотно-зависимыми свойствами При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках. Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии. В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник. Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора. ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости) ИП влажности древесины В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит.



В современной технике конденсаторы находят себе исключительно широкое и разностороннее применение, прежде всего в областях электроники. В радиотехнической и телевизионной аппаратуре В радиолокационной технике В телефонии и телеграфии В автоматике и телемеханике В технике счетно- решающих устройств В электроизмерительной технике В лазерной технике
















В современной электроэнергетике конденсаторы находят себе также весьма разнообразное и ответственное применение: 1.Для улучшения коэффициента мощности и промышленных установок (косинусные или шунтовые конденсаторы); 2.Для продольной емкости компенсации дальних линий передач и для регулирования напряжения в распределительных сетях (серийные конденсаторы); 3.Для емкостного отбора энергии от линий передач высокого напряжения и для подключения к линиям передач специальной аппаратуры связи и защитной аппаратуры (конденсаторы связи); 4.Для защиты от перенапряжений.






2. В добывающей промышленности (угольной, металлорудной и т.п.) – в рудничном транспорте на конденсаторных электровозах нормальной и повышенной частоты (бесконтактных), в электровзрывных устройствах с использованием электрогидравлического эффекта и т.д.

Муниципальное автономное общеобразовательное учреждение

«Лицей № 7» г. Бердск

Конденсаторы

8 класс

Учитель физики

И.В.Торопчина


Конденсатор

Конденсатор- это устройство, предназначенное для накопления электрического заряда и энергии электрического поля.


Конденсатор

Конденсатор представляет собой два

проводника (обкладки), разделенных слоем

диэлектрика, толщина которого мала по

сравнению с размерами проводников.


Все электрическое поле сосредоточено внутри конденсатора и однородно.

Заряд конденсатора - это абсолютное значение заряда одной из обкладок конденсатора.



- по виду диэлектрика : воздушные,

слюдяные, керамические,

электролитические. - по форме обкладок : плоские,

сферические, цилиндрические. - по величине емкости:

постоянные, переменные.


  • В зависимости от назначения конденсаторы имеют различное устройство.

  • Обычный технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Полоски и ленты туго свернуты в пакет небольшого размера

Конденсаторы переменной электроемкости


Обозначение конденсаторов

Конденсатор постоянной ёмкости

Конденсатор переменной ёмкости


Электроемкость

Физическая величина, характеризующая способность двух проводников накапливать электрический заряд называется электроёмкостью, или ёмкостью.


При увеличении заряда в 2, 3, 4 раза соответственно в 2, 3, 4

раза увеличатся показания электрометра, т. е. увеличится

напряжение между пластинами конденсатора.

Отношение заряда к напряжению будет оставаться

постоянным:


Электроёмкость конденсатора

  • Величина, измеряемая отношением заряда ( q) одной из пластин конденсатора к напряжению ( U) между пластинами, называется электроёмкостью конденсатора .
  • Электроёмкость конденсатора вычисляется по формуле:

C = q / U


Единицы электроемкости

Электроемкость измеряется в фарадах(Ф)

[ С ] = 1Ф (фарад)

Электроемкость двух проводников численно

равна единице, если при сообщении им зарядов

+1 Кл и -1 Кл между ними возникает разность

потенциалов 1В

1Ф = 1Кл/В


Единицы электроемкости

1 мкФ (микрофарад)=10 -6 Ф

1 нФ (нанофарад)=10 -9 Ф

1 пФ (пикофарад)=10 -12 Ф



  • Чем больше площадь пластин, тем больше ёмкость конденсатора.
  • При уменьшении расстояния между пластинами конденсатора при неизменном заряде ёмкость конденсатора увеличивается.
  • При внесении диэлектрика ёмкость конденсатора увеличивается.

Емкость конденсатора зависит от площади пластин, расстояния между пластинами, от свойств внесённого диэлектрика.


Электроемкость

от геометрических

размеров проводников

Зависит

от формы проводников и

их взаимного расположения

от электрических свойств

среды между проводниками


Энергия конденсатора

  • Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. В соответствии с законом сохранения энергии, совершённая работа А равна энергии конденсатора Е, т. е

А = Е,

где Е - энергия конденсатора.

  • Работу электрическое поле конденсатора, можно найти по формуле: А = qU cp ,

где U ср - это среднее значение напряжения.

U ср = U/2; тогда А = qU ср = qU/2, так как q = CU, то А = CU 2 /2.

  • Энергия конденсатора ёмкостью С равна:

W = CU 2 /2


  • Конденсаторы могут длительное время накапливать энергию, а при разрядке они отдают её почти мгновенно.
  • Свойство конденсатора накапливать и быстро отдавать электрическую энергию широко используется в электротехнических и электронных устройствах, в медицинской технике (рентгеновская техника, устройства электротерапии), при изготовлении дозиметров, аэрофотосъёмке.


  • Лампа-вспышка питается электрическим током разрядки конденсатора.
  • Газоразрядные трубки зажигаются при разрядки батареи конденсаторов.
  • Радиотехника .


Первый конденсатор был изобретен в 1745 г. немецким юристом и учёным Эвальд Юрген фон Клейстом

Первый конденсатор: одна обкладка-ртуть, другая обкладка- рука экспериментатора, державшая банку.


  • Почти такой же опыт и почти в то же время был поставлен в голландском городе Лейдене профессором университета Питером ван Мушенбруком.
  • Зарядив воду и взяв банку в одну руку, он прикоснулся другой рукой к металлическому стержню, служившему для подвода заряда к воде. При этом Мушенбрук ощутил такой сильный удар в руки, плечи и грудь, что потерял сознание, и два дня приходил в себя.
  • Эксперимент ван Мушенбрука получил большую известность, поэтому конденсатор стал известен как «лейденская банка».

Домашнее задание

§ 54, Упражнение 38