PartMaker: автоматизированная разработка управляющих программ для современного оборудования с ЧПУ. Программы для чпу станков полный набор для начала работы PartMaker: автоматизированная разработка УП

Управляющая программа для станка с ЧПУ – составляющая станочного оборудования с числовым программным управлением. С ее помощью обеспечивается автономная или полуавтономная обработка заготовок. Этот компонент позволяет получить качественное и точное изготовление деталей, имеющих сложные формы. Разработка управляющей программы требует специальных навыков.

Предназначение

Управляющая программа обеспечивает контроль над станками на числовом программном управлении. без необходимости постоянного слежения. Она представляет собой комплекс команд, которые подаются рабочему оборудованию.

При помощи команд:

  • перемещаются инструменты;
  • перемещаются заготовки;
  • контролируется скорость обработки.

Написание программы осуществляется под конкретные заготовки. Для ее создания необходимо установить на компьютер специальную программу. Наличие подобного софта позволит создать методики контроля самостоятельно при наличии базовых навыков.

Программное управление бывает дискретным и контурным. Первый вариант используется для обработки заготовок с простыми формами. Он позволяет выполнить базовые функции. УП второго типа предназначен для сложной обработки. Он чаще всего используется на токарных и . Обработка осуществляется в зависимости от характеристик конкретного прибора. На их основе выполняются заданные функции.

Чтобы создать технологическую операцию, необходимо получить информацию о:

  • поверхности детали;
  • рабочих инструментах;
  • величине припуска;
  • числе проходов для каждой поверхности;
  • режиме резания.

Также необходимо запомнить, в каком положении инструменты находились изначально, и по какой траектории они будут двигаться. Определение траектории вычисляется на основе координат опорных точек.

При помощи управляющей программы можно выполнить:

  • токарные работы;
  • фрезеровку;
  • шлифовальные работы.

Софт может использоваться для нескольких задач сразу.

Его можно скачать в интернете бесплатно, или же воспользоваться платными приложениями. Платные приложения могут отличаться наличием дополнительных возможностей.

Создание

Методика создания УП включает несколько этапов. На первом этапе создания управляющей программы строится цифровая модель изделия. После этого проводится программный анализ. С его помощью модель можно разделить на точки, чтобы разработать систему координат. По ней будут двигаться инструменты и заготовка в ходе работы.

Создать программу без трехмерной модели изделия не получится. Данная задача выполняется специалистом. Также уже готовые модели можно скачать в интернете, но нет гарантии, что они подойдут для нужной работы.

При изготовлении программ для станков с ЧПУ можно использовать системы автоматизированного программирования, самыми популярными из которых являются:

  • AutoCAD;
  • NanoCAD;
  • T-FlexCAD;
  • ArtCam;
  • SolidWorks.

При помощи программного обеспечения можно изменить характеристики будущего изделия. Чем больше будет собранного информации, тем более точной будет обработка. На завершающем этапе разрабатываются управляющие команды, которые будут объединены в файл.

Обработкой файла будет заниматься процессор. Информация с файла считывается последовательно. Поэтому команды выполняются друг за другом. Программу легко записать на обычном компьютере и подключить ее при помощи флешки. Затем она будет записана в память компьютера, управляющего станком, и использовать ее не понадобится. С самой программой можно будет осуществлять серийную разработку деталей.

Основной составляющей управляющих программ является G-код. Он состоит из числовых символов. Символы числовой системы могут быть различными командами:

  • технологическими;
  • геометрическими;
  • подготовительными;
  • вспомогательными.

Первый тип отвечает за определение рабочего инструмента, скорость обработки, включение и выключение прибора. Второй тип определяет и контролирует заданные координаты. Третий тип позволяет программе управлять станком, а также задает режимы производства. Последний тип включает и выключает отдельные механизмы. Разобраться в коде может технолог-программист.

При покупке оборудования следует инструкция, в которой указано, как правильно создавать числовое программное управление, и использовать различные типы команд.

Виды программ

При создании программы для станков необходимо учесть целый комплекс вопросов:

  • на каких оборотах способен работать шпиндель;
  • на каких скоростях он может работать;
  • с какой производительностью способен работать станок;
  • насколько может перемещаться рабочий инструмент;
  • сколько инструментов может использовать станок.

Большинство вопросов связаны с характеристиками станка. Для определения необходимых данных достаточно воспользоваться инструкцией, которая следует вместе с оборудованием при его покупке. Некоторые управляемые станки могут иметь дополнительные функции. Их также нужно учитывать при программировании, иначе обработка может осуществляться неточно. Список дополнительных функций также имеется в инструкции.

Не существует универсальных программ для передачи команд станку. Список самых востребованных состоит из программ для:

  • разработки трехмерных моделей;
  • быстрого просмотра и редактирования трехмерных моделей;
  • конвертации файлов из одного формата в другой;
  • создания и предварительного просмотра УП;
  • выполнения задач на станке.

Управляющие программы позволяют станкам изготовлять сложные изделия. Детали со сложной формы могут быть изготовлены из древесины, металла, камня. На специальных станках можно обработать менее используемые материалы.

Преимущества

Управляющая программа помогает упросить производственный процесс в несколько раз. На станках с ЧПУ не требуется больше одного , и работает по простой методике. УП экономят время и повышают точность обработки.

Они используются при:

  • изготовлении рекламных баннеров;
  • дизайнерском оформлении помещения;
  • порезке и раскрое листового материала;
  • изготовлении сувенирных изделий.

При помощи современных приложений составить управляющую программу может человек, не имеющий образования в области программирования. Благодаря поддержке различных операционных систем, запустить УП можно практически на любом компьютерном устройстве, связанным со станком с системой числового программного управления. Недостаток программных приложений заключается в периодическом возникновении ошибок.

Виды ошибок

Ошибки возникают чаще всего при разработке УП для обработки деталей, имеющих сложные формы. Наиболее частой причиной является недостаточная подготовка оператора-программиста. Поэтому УП должны разрабатываться подготовленными сотрудниками.

Ошибки бывают трех типов:

  • герметического;
  • технологического;
  • перфорационного.

Первый вид ошибок возникает на этапе расчетов. В большинстве случаев они связаны с нарушением параметров заготовки, вычислении координат опорных точек, определения положения рабочих инструментов станочного прибора.

Технологические ошибки возникают, когда станок настраивается. Их причина заключается в неправильно заданной скорости, параметров обработки, и других команд, задаваемых для оборудования с ЧПУ. Третий тип ошибок возникает в перфорированной ленте или перфораторе.

Можно писать управляющие программы на компьютере в блокноте, особенно если с математикой хорошо и много свободного времени. Или можно сразу на станке, и пусть весь цех подождет, да и заготовку лишнюю не жалко. Есть еще третий способ написания – лучше еще не придумали.

Станок с ЧПУ обрабатывает заготовку по программе в G-кодах. G-код – это набор стандартных команд, которые поддерживают станки с ЧПУ. Эти команды содержат информацию, где и с какой скоростью двигать режущий инструмент, чтобы обработать деталь. Передвижение режущего инструмента называется траекторией. Траектория инструмента в управляющей программе состоит из отрезков. Эти отрезки могут быть прямыми линиями, дугами окружностей или кривыми. Точки пересечения таких отрезков называются опорными точками. В тексте управляющей программы выводятся координаты опорных точек.

Пример программы в G-кодах

Текст программы

Описание

Задаем параметры: плоскость обработки, номер нулевой точки, абсолютные значения

Вызов инструмента с номером 1

Включение шпинделя – 8000 об/мин

Ускоренное перемещение в точку X-19 Y-19

Ускоренное перемещение на высоту
по Z 3 мм

Линейное перемещение инструмента в точку ХЗ Y3 с подачей F = 600 мм/мин

Перемещение инструмента по дуге радиусом 8 мм в точку X8 Y3

Выключение шпинделя

Завершение программы

Есть три метода программирования станков с ЧПУ:

  1. Вручную.
  2. На станке, на стойке с ЧПУ.
  3. В CAM-системе.

Вручную

Для ручного программирования вычисляют координаты опорных точек и описывают последовательность перемещения от одной точки к другой. Так можно описать обработку простой геометрии, в основном для токарной обработки: втулки, кольца, гладкие ступенчатые валы.

Проблемы

Вот с какими проблемами сталкиваются, когда программу на станок пишут вручную:

- Долго . Чем больше строк кода в программе, тем выше трудоемкость изготовления детали, тем выше себестоимость этой детали. Если в программе получается больше 70 строк кода, то лучше выбрать другой способ программирования.

- Брак. Нужна лишняя заготовка на внедрение, чтобы отладить управляющую программу и проверить на зарезы или недорезы.

- Поломка оборудования или инструмента. Ошибки в тексте управляющей программы, помимо брака, также могут привести и к поломке шпинделя станка или инструмента.

У деталей, для которых программы пишут вручную, очень высокая себестоимость.

На стойке с ЧПУ

На стойке с ЧПУ программируют обработку детали в диалоговом режиме. Наладчик станка заполняет таблицу с условиями обработки. Указывает, какую геометрию обрабатывать, ширину и глубину резания, подходы и отходы, безопасную плоскость, режимы резания и другие параметры, которые для каждого вида обработки индивидуальны. На основе этих данных стойка с ЧПУ создает G-команды для траектории движения инструмента. Так можно программировать простые корпусные детали. Чтобы проверить программу, наладчик запускает режим симуляции на стойке с ЧПУ.

Проблемы

Вот с какими проблемами сталкиваются, когда программу пишут на стойке:

- Время. Станок не работает, пока наладчик пишет программу для обработки детали. Простой станка – это потерянные деньги. Если в программе получается больше 130 строк кода, то лучше выбрать другой способ программирования. Хотя на стойке с ЧПУ, конечно, написать программу быстрее, чем вручную.

- Брак. Стойка с ЧПУ не сравнивает результат обработки с 3D-моделью детали, поэтому симуляция на стойке с ЧПУ не показывает зарезы или положительный припуск. Для отладки программы нужно заложить лишнюю заготовку.

- Не подходит для сложнопрофильных деталей. На стойке с ЧПУ не запрограммировать обработку сложнопрофильных деталей. Иногда для конкретных деталей и типоразмеров производители стоек ЧПУ под заказ делают специальные операции.

Пока идет создание программы на стойке, станок не приносит деньги производству.

В SprutCAM

SprutCAM – это CAM-система. CAM – сокращение от Computer-Aided Manufacturing. Это переводят как «изготовление при помощи компьютера». В SprutCAM загружают 3D-модель детали или 2D-контур, затем выбирают последовательность изготовления детали. SprutCAM рассчитывает траекторию режущего инструмента и выводит ее в G-кодах для передачи на станок. Для вывода траектории в G-код используют постпроцессор. Постпроцессор переводит внутренние команды SprutCAM на команды G-кода для станка с ЧПУ. Это похоже
на перевод с иностранного языка.

Принцип работы в SprutCAM представлен в этом видео:

Преимущества

Вот какие плюсы при работе со SprutCAM:

- Быстро. Сокращает время на создание программ для станков с ЧПУ на 70 %.

- Внедрение без лишней заготовки. Программа проверяется до запуска на станке.

- Исключает брак. По отзывам наших пользователей, SprutCAM сокращает появление брака на 60 %.

- Контроль столкновений. SprutCAM контролирует соударения с деталью или рабочими узлами станка, врезания на ускоренной подаче.

- Обработка сложнопрофильных деталей. В SprutCAM для многоосевых операций используют 13 стратегий перемещения инструмента по поверхности детали и 9 стратегий управления осью инструмента. SprutCAM автоматически контролирует угол наклона и рассчитывает безопасную траекторию обработки, чтобы не было соударений державки или режущего инструмента с заготовкой.

Составление управляющей программы для своего станка с ЧПУ возможно в полнофункциональной версии SprutCAM . Ее нужно скачать и запустить. После установки необходимо будет пройти регистрацию. Сразу после регистрации SprutCAM начнет работать.

Для тех кто только начал пробовать, мы предоставляем 30 дневную полнофункциональную бесплатную версию программы!

SprutCAM – это 15 конфигураций, в том числе две спецверсии: SprutCAM Практик и SprutCAM Robot. Чтобы узнать, какая конфигурация подходит для вашего оборудования и сколько она стоит, звоните по телефону 8-800-302-96-90 или пишите на адрес info@сайт.

Перед любым владельцем станка с ЧПУ встает вопрос выбора программного обеспечения. Софт, используемый для подобного технологического оборудования, должен быть многофункциональным и простым в использовании. Желательно приобретать лицензионные программные продукты. В этом случае программы для станков с ЧПУ не будут зависать, что позволит повысить эффективность производственных процессов.

Набор программного обеспечения для станков с ЧПУ

Выбор софта во многом зависит от типа оборудования и тех задач, которые пользователь намерен решить. Однако существуют универсальные программы, которые можно использовать практически для всех видов станков с ЧПУ. Наибольшее распространение получили следующие продукты:


1. . Этот программный пакет был разработан для моделирования и проектирования изделий, изготавливаемых на станках. Он оснащен функцией автоматического генерирования моделей из плоских рисунков. Пакет программ ArtCAM содержит все необходимые инструменты для дизайна креативных изделий и создания сложных пространственных рельефов.
Стоит отметить, что данный софт позволяет использовать трехмерные шаблоны для создания проектов будущих изделий из простых элементов. Кроме того, программа позволяет пользователю вставлять один рельеф в другой, как в двухмерном рисунке.


2. Универсальная программа управления LinuxCNC. Функциональным назначением этого софта является управление работой станка с ЧПУ, отладка программы обработки деталей и многое другое.
Подобный программный пакет можно использовать для обрабатывающих центров, фрезерных и токарных станков, а также машин для термической или лазерной резки.
Отличием этого продукта от других программных пакетов является то, что его разработчики частично совместили его с операционной системой. Благодаря этому программу LinuxCNC отличается расширенными функциональными возможностями. Скачать этот продукт можно совершенно бесплатно на сайте разработчика. Она доступна как в виде инсталяционного пакета, так и в виде LifeCD.
Пользовательский интерфейс этого программного обеспечения интуитивно понятный и доступный. Для бесперебойного функционирования софта на жестком диске компьютера должно быть не меньше 4 гигабайтов свободной памяти. Подробное описание программы LinuxCNC можно найти в свободном доступе в интернете.


3. . У этого программного обеспечения огромная армия поклонников во всех странах мира. Софт используется для управления фрезерными, токарными, гравировальными и другими видами станков с ЧПУ. Этот пакет программ можно установить на любой компьютер с операционной системой Windows. Преимуществом использования данного софта является его доступная стоимость, регулярные обновления, а также наличие русифицированной версии, что облегчает использование продукта оператором, не владеющим английским языком.



4. Mach4. Это новейшая разработка компании Artsoft. Mach4 считается преемницей популярной программы Mach3. Программа считается одной из самых быстрых. Ее принципиальное отличие от предыдущих версий заключается в наличии интерфейса, который взаимодействует с электроникой. Это новое программное обеспечение может работать с большими по объему файлами в любой операционной системе. Пользователю доступно руководство по использованию программы Mach4 на русском языке.



5. MeshCAM. Это пакет для создания управляющих программ для станков с ЧПУ на основе трехмерных моделей и векторной графики. Примечательно, что пользователю необязательно обладать богатым опытом CNC-программирования, чтобы освоить этот софт. Достаточно обладать базовыми навыками работы на компьютере, а также точно задавать параметры, по которым будет производиться обработка изделий на станке.
MeshCAM идеально подходит для проектирования двухсторонней обработки любых трехмерных моделей. В этом режиме пользователь сможет быстро обрабатывать на станке объекты любой сложности.


6. SimplyCam. Это компактная и многофункциональная система для создания, редактирования, сохранения чертежей в формате DXF. Это обеспечение генерирует управляющие программы и G-коды для станков с ЧПУ. Они создаются по растворным рисункам. Пользователь может создать изображение в одной из графических программ своего компьютера, а затем загрузить его в SimplyCam. Программа оптимизирует этот рисунок и переведет его в векторный чертеж. Пользователь также может использовать такую функцию, как ручная векторизация. В этом случае изображение обводится стандартными инструментами, которые используются в AutoCAD. SimplyCam создает траектории обработки изделий на станках с ЧПУ.



7. CutViewer. Это программа имитирует обработку с удалением материала на двухосевых станках с ЧПУ. С ее помощью пользователь может получить визуализацию обрабатываемых заготовок и деталей. Использование этого софта позволяет повысить производительность технологического процесса, устранить имеющиеся ошибки в программировании, а также сократить временные затраты на проведение отладочных работ. Программа CutViewer совместима с широким спектром современного станочного оборудования. Ее действенные инструменты позволяют обнаружить серьезные ошибки в технологическом процессе и своевременно их устранить.



8. CadStd. Это простая в использовании чертежная программа. Она используется для создания проектов, схем и графики любой сложности. С помощью расширенного набора инструментов этой программы пользователь может создать любые векторные чертежи, которые могут использоваться для проектирования фрезерной или плазменной обработки на станках с ЧПУ. Созданные DXF-файлы можно впоследствии загрузить в CAM-программы, чтобы генерировать правильные траектории обработки деталей.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МАМИ

Факультет: «Механико-технологический»

Кафедра: «Автоматизированные станочные системы и инструмент»

КУРСОВАЯ РАБОТА

по дисциплине

Программированная обработка на станках с ЧПУ и САП

Разработка управляющей программы для станка с числовым программным управлением

Москва 2011 г.

Ведение

Технологическая подготовка управляющей программы

1 Выбор технологического оборудования

2 Выбор системы УЧПУ

3 Эскиз заготовки, обоснование метода ее получения

4 Выбор инструмента

5 Технологический маршрут обработки детали

6 Назначение режимов обработки

Математическая подготовка управляющей программы

1 Кодирование

2 Управляющая программа

Выводы по работе

Список используемой литературы

кодирование станок деталь программное управление

2. Введение

В настоящее время широкое развитие получило машиностроение. Его развитие идет в направлениях существенного повышения качества продукции, сокращения времени обработки на новых станках за счет технических усовершенствований.

Современный уровень развития машиностроения предъявляет следующие требования к металлорежущему оборудованию:

высокий уровень автоматизации;

обеспечение высокой производительности, точности и качества

выпускаемой продукции;

надежность работы оборудования;

высокая мобильность обусловлена в настоящее время быстросменностью объектов производства.

Первые три требования привели к необходимости создания специализированных и специальных станков-автоматов, а на их базе автоматических линий, цехов, заводов. Четвертая задача, наиболее характерная для опытного и мелкосерийного производств, решается за счет станков с ЧПУ. Процесс управления станком с ЧПУ представляется, как процесс передачи и преобразования информации от чертежа к готовой детали. Основной функцией человека в данном процессе является преобразование информации заключенной в чертеже детали в управляющую программу, понятную ЧПУ, что позволит управлять непосредственно станком таким образом, чтобы получить готовую деталь, соответствующую чертежу. В данном курсовом проекте будут рассматриваться основные этапы разработки управляющей программы: технологическая подготовка программы, и математическая подготовка. Для этого на основе чертежа детали будут выбраны: заготовка, система ЧПУ, технологическое оборудование.

3. Технологическая подготовка управляющей программы

3.1 Выбор технологического оборудования

Для обработки данной детали выбираем токарный станок с ЧПУ модели 16К20Ф3Т02.

Данный станок предназначен для токарной обработки деталей тел вращения со ступенчатым и криволинейным профилями за один или несколько рабочих ходов в замкнутом полуавтоматическом цикле. Кроме того, в зависимости от возможностей устройства ЧПУ на станке можно нарезать различные резьбы.

Станок используется для обработки деталей из штучных заготовок с зажимом в механизированном патроне и поджимом при необходимости центром, установленном в пиноли задней бабки с механизированным перемещением пиноли.

Технические характеристики станка:

Наименование параметраВеличина параметраНаибольший диаметр обрабатываемого детали: над станиной над суппортом 400 мм 220 ммДиаметр прутка проходящего через отверстие50 ммЧисло инструментов6Число частот вращения шпинделя12Пределы частот вращения шпинделя20-2500 мин-1Пределы рабочих подач: продольных поперечных 3-700 мм/мин 3-500 мм/минСкорость быстрых ходов: продольных поперечных 4800 мм/мин 2400 мм/минДискретность перемещений: продольных поперечных 0,01 мм 0,005 мм

3.2 Выбор системы УЧПУ

Устройство УЧПУ - часть системы ЧПУ предназначена для выдачи управляющих воздействий исполнительным органом станка в соответствии с управляющей программой.

Числовое программное управление (ГОСТ 20523-80) станком - управление обработкой заготовки на станке по управляющей программе, в которой данные заданы в цифровой форме.

Различают ЧПУ:

-контурное;

-позиционное;

позиционно-контурное (комбинированное);

адаптивное.

При позиционном управлении (Ф2) перемещение рабочих органов станка происходит в заданные точки, при чем траектория перемещения не задается. Такие системы позволяют обработать только прямолинейные поверхности.

При контурном управлении (Ф3) перемещение рабочих органов станка происходит по заданной траектории и с заданной скоростью для получения необходимого контура обработки. Такие системы обеспечивают работу по сложным контурам, в том числе криволинейные.

Комбинированные системы ЧПУ работают по контрольным точкам (узловым) и по сложным траекториям.

Адаптивное ЧПУ станком обеспечивает автоматическое приспосабливание процесса обработки заготовки к изменяющимся условиям обработки по определенным критериям. Деталь, рассматриваемая в данной курсовой работе, имеет криволинейную поверхность (галтель), следовательно, первая система ЧПУ здесь не применятся. Возможно использование последних трех систем ЧПУ.

С экономической точки зрения целесообразно в данном случае использовать контурное или комбинированное ЧПУ, т.к. они менее дороги, чем остальные и в то же время обеспечивают необходимую точность обработки.

В данном курсовом проекте была выбрана система УЧПУ «Электроника НЦ-31», которая имеет модульную структуру, что позволяет увеличивать число управляемых координат и предназначено в основном для управления токарными станками с ЧПУ со следящими приводами подач и импульсными датчиками обратной связи.

Устройство обеспечивает контурное управление с линейно-круговой интерполяцией. Управляющая программа может вводиться как непосредственно с пульта(клавиатуры), так и с кассеты электронной памяти.

3.3 Эскиз заготовки, обоснование метода ее получения

В данной курсовой работе условно принимаем тип производства рассматриваемой детали как мелкосерийный. Поэтому в качестве заготовки для детали выбран пруток диаметра 95 мм простого сортового проката (круглого профиля) общего назначения из стали 45 ГОСТ 1050-74 с твердостью НВ=207…215 .

Простые сортовые профили общего назначения используется для изготовления гладких и ступенчатых валов, станков диаметром не более 50 мм, втулок диаметром не более 25 мм, рычагов, клиньев, фланцев.

На заготовительной операции втулок нарезается в размер 155 мм, затем на фрезерно-центровальном станке торцуется в размер 145 мм, и здесь же одновременно выполняются центровые отверстия. Поскольку при установке детали в центрах происходит совмещение конструкторской и технологической базы, а погрешность в осевом направлении мала, то ей можно пренебречь.

Чертеж заготовки после фрезерно-центровальной операции представлен на рисунке 1.

Рисунок 1 - чертеж заготовки

3.4 Выбор инструмента

Инструмент Т1

Для обработки основных поверхностей черновой и чистовой выбираем правый проходной резец с механическим креплением пластины DNMG110408 из твердого сплава GC1525 и прижимом повышенной жесткости (рис. 2).

Рисунок 2 - правый проходной резец

Krb, ммf1, ммh, ммh1, ммl1, ммl3, ммγλsЭталонная пластина9302025202012530,2-60-70DNMG110408

Инструмент Т2


Рисунок 3 - сборный отрезной резец

la, ммar, ммb, ммf1, ммh, ммh1, ммl1, ммl3, ммЭталонная пластина4102020,7202012527N151.2-400-30

Инструмент Т3

Для сверления заданного отверстия выбираем сверло из твердого сплава GC1220 для сверления под резьбу M10 с цилиндрическим хвостовиком (рис. 4).

Рисунок 4 - сверло

Dc, ммdmm, ммD21 max, ммl2, ммl4, ммl6, мм91211,810228,444

Инструмент Т4

Для рассверливания заданного отверстия выбираем сверло из твердого сплава GC1220 с цилиндрическим хвостовиком (рис. 5).

Dc, ммdmm, ммl2, ммl4, ммl6, мм20201315079

Инструмент Т5

Для выполнения внутренней резьбы M10×1 выбираем метчик

ГОСТ 3266-81 из быстрорежущей стали с винтовыми канавками (рис.5).

Рисунок 5 - метчик

3.5 Технологический маршрут обработки

Технологический маршрут обработки детали должен содержать наименование и последовательность переходов, перечень обрабатываемых на переходе поверхностей и номер используемого инструмента.

Операция 010 Заготовительная. Прокат. Отрезать заготовку Ø 95 мм в размер 155 мм, выполнять центровые отверстия до Ø 8 мм.

Операция 020 Фрезерно-центровальная. Фрезеровать торцы в размер 145 мм.

Операция 030 Токарная: установить заготовку в переднем ведущем и заднем вращающемся центрах.

Установ А

Переход 1

Инструмент Т1

Точить предварительно:

·конус Ø 30 мм до Ø 40

·Ø 40

·конус Ø 40 мм до Ø 60 мм от длины 60 мм до длины 75 мм от торца заготовки

·Ø 60

·Ø 60 мм до Ø 70 по дуге радиусом 15 мм от длины 85 мм от торца заготовки

·Ø 70

·Ø 70 мм до Ø 80 мм на длине 120 мм от торца заготовки

·Ø 80 мм до Ø 90

·Ø 90

Оставить припуск на чистовую обработку 0,5 мм на сторону

Переход 2

Инструмент Т1

Точить окончательно по переходу 1:

·конус Ø 30 мм до Ø 40 мм до длины 30 мм от торца заготовки

·Ø 40 мм от длины 30 мм на длину 30 мм от торца заготовки

·конус Ø 40 мм до Ø 60 мм от длины 60 мм до длины 75 мм от торца заготовки

·Ø 60 мм от длины 75 мм до длины 85 мм от торца заготовки

·Ø 60 мм до Ø 70 по дуге радиусом 15 мм от длины 85 мм от торца заготовки

·Ø 70 мм от длины 100 мм до длины 120 мм от торца заготовки

·Ø 70 мм до Ø 80 мм на длине 120 мм от торца заготовки

·Ø 80 мм до Ø 90 мм по дуге радиусом 15 мм от длины от длины 120 мм от торца заготовки

·Ø 90 мм от длины 135 мм до длины 145 мм от торца заготовки

Переход 3

Инструмент Т2

·Точить прямоугольную канавку шириной 10 мм с диаметра 40 до диаметра 30 мм на расстоянии 50 мм от торца заготовки.

Установ Б

Переход 1

Инструмент Т3

·Сверлить отверстие Ø9 глубиной 40 мм.

Переход 2

Инструмент Т4

·Рассверлить отверстие с Ø9 до Ø20 до глубины 15 мм.

Переход 3

Инструмент Т5

·Нарезать резьбу метчиком М10×1 на глубину 30 мм.

Операция 040 Промывочная.

Операция 050 Термическая.

Операция 060 Шлифовальная.

Операция 070 Контрольная.

3.6 Назначение режимов обработки

Установ А

Переход 1 - черновое точение

Инструмент Т1

2. Глубину резания при предварительном точении стали проходным резцом с твердосплавной пластиной выбираем t = 2,5 мм.

.При точении стали и глубине резания t = 2,5 мм выбираем подачу S = 0,6 мм/об.

.

.Скорость резания

Сv

КMV = 0,8 (, табл. 4 стр. 263)

КПV = 0,8 (, табл. 5 стр. 263)

КИV = 1 (, табл. 6 стр. 263)

6.Число оборотов шпинделя.

7.Сила резания.

где: Ср

(, табл. 9 стр. 264)

8.Мощность резания.

Переход 2 - чистовое точение

Инструмент Т1

.Определение длины рабочего хода L = 145 мм.

2. Глубину резания при предварительном точении стали проходным резцом с твердосплавной пластиной выбираем t = 0,5 мм.

.При точении стали и глубине резания t = 0,5 мм выбираем подачу S = 0,3 мм/об.

.Стойкость инструмента Т = 60 мин.

.Скорость резания

Сv = 350, x = 0,15, y = 0,35, m = 0,2 (, табл. 17 стр. 269)

КMV = 0,8 (, табл. 4 стр. 263)

КПV = 0,8 (, табл. 5 стр. 263)

КИV = 1 (, табл. 6 стр. 263)

6.Число оборотов шпинделя.

7.Сила резания.

где: Ср = 300, х = 1, у = 0,75, n = -0,15 (, табл. 22 стр. 273)

(, табл. 9 стр. 264)

8.Мощность резания.

Переход 3 - точение канавок

Инструмент Т2

.Определение длины рабочего хода L = 10 мм.

2. При нарезании канавок глубина резания равна длине лезвия резца

.При точении стали и глубине резания t = 4 мм выбираем подачу S = 0,1 мм/об.

4.Стойкость инструмента Т = 45 мин.

.Скорость резания

Информация о порядке обработки изделия на станке вводится по кадрам. КАДР - это часть управляющей программы, вводимая и обрабатываемая как единое целое и содержащая не менее одной команды.

В каждом кадре записывается только та часть программы, которая изменяется по отношению к предыдущему кадру.

Кадр состоит из слов, определяющих назначение следующих за ними данных.

Например:

N3 - порядковый номер кадра

G02 - подготовительная функция

(G01 - перемещение по прямой к точке

G02,G03 - круговая интерполяция по часовой или против)

X - Координаты конеченой точки перемещения по осям, Y - (например, X+037540 (375,4мм)

Координаты центра дуги при круговой интерполяции

F4 - код подачи (например, F0060 (60мм/мин)) S2 - код частоты вращения шпинделя T2 - номер инструмента

M2 - вспомогательная функция (смена инструмента, смена стола, включение охлаждения, зажим заготовки...).

L3 -ввод и отмена коррекции геометрической информации.

LF - конец кадра.

Чтобы составить программу перемещения рабочих органов станка надо связать с ним определенную систему координат. Ось Z выбирается параллельно оси главного шпинделя станка, ось X всегда горизонтальна. При составлении программы пользуются понятием нулевой, исходной и фиксированной точки.

Подготовка управляющей программы включает:

1.Анализ чертежа детали и выбор заготовки.

    Выбор станка по его технологическим возможностям (размеры, возможности интерполяции, количество инструментов и т.д.).

    Разработка технологического процесса изготовления детали, выбор режущего инструмента и режимов резания.

4.Выбор системы координат детали и исходной точки для инструмента.

5.Выбор способа крепления заготовки на станке.

    Простановка опорных точек, построение и расчет перемещения инструмента.

    Кодирование информации

    Запись программы на программоноситель, ее редактирование и отладка.

Применение станков с ЧПУ значительно обострило проблему использования человека в производственных условиях. Выполнение всех

действий по изготовлению детали станком в автоматическом режиме оставило человеку наиболее тяжелую и не творческую работу по установке и снятию заготовок. Поэтому, одновременно с развитием станочных систем с ЧПУ, велись работы по созданию систем способных заменить человека при выполнении специфических действий, требующих применения "РУЧНОГО" труда.

Фрезерный станок и многооперационный станок (обрабатывающий центр) с числовым программным управлением

3.3 Промышленные роботы

Промышленный робот (ПР) это механический манипулятор с программным управлением.

Манипулятор - механическое устройство, имитирующее или заменяющее действия человеческих рук на обьект производства.

Промышленные роботы подразделяются на технологические (изме-

няющие свойства обьекта) и транспортные.

Технологический робот производит сварку, транспортный робот перемещает заготовки в зону обработки.

По грузоподьемности подразделяются на:

Масса обьекта сверхлегкие до 1 кг легкие 1 - 10 кг средние 10 -100 кг тяжелые 100- 1000 кг сверхтяжелые более 1000 кг

Сверхлегкие роботы собирают прибор, тяжелый робот перемещает крупногабаритные заготовки.

ПР подразделяются также по количеству степеней свободы рабочего органа, по системе ЧПУ (замкнутая и незамкнутая, контурная и позиционная, CNC, DNC, HNC).

Зона обслуживания транспортного робота и траектория перемещения заготовки

В настоящее время широкое распространение получили транспортные роботы, осуществляющие загрузку технологического оборудование, доставку заготовок со склада и транспортировку деталей на склад. При производстве штамповочных операций транспортные роботы осуществляют подачу заготовок на штамп и снятие их.

Широкое применение получили роботы производящие сварку кузовов автомобилей, их окраску. Роботы применяются при сборке радиоэлектронной аппаратуры, часов и др. приборов.

В совокупности с технологическим оборудованием с системами ЧПУ промышленные роботы образуют базу для комплексной автоматизации производства.

Роботы сваривают кузова легковых автомобилей и устанавливают деревянные панели на станок для обработки (примеры применения роботов)

Контрольные вопросы:

1.Какие системы ЧПУ позволяют обрабатывать сферические поверхности на токарных станках?

2.Какие системы ЧПУ целесообразно применять на сверлильных станках?

3.По скольки координатам возможна интерполяция при обработке заготовок на токарных станках? - на фрезерных станках?

4.Чем отличаются системы циклового программного управления от систем ЧПУ?

5.Какие функции выполняют промышленные роботы?

Образец вопросов карты тестового контроля.

    На каких операциях целесообразно применение систем ЧПУ с контурным управлением?

А). При точении ступенчатых валиков.

Б) . При фрезеровании поверхностей двойной кривизны.

В). При обработке отверстий в печатных платах.

    Какие виды роботов применяются при окраске сложнопрофильных деталей? А). Технологические с контурным управлением.

Б). Крупногабаритные с позиционным управлением.

В). Транспортные с контурным управлением.