Особенности культивирования в различных живых системах. Основные стадии репродукции вируса в клетке хозяина. Особенности репродукции ЖК-вирусов Выделение вирусов в куриных эмбрионах

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Этапы репродукции вирусов

Стадии репродукции вирусов

Типы взаимодействия вируса с клеткой. Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

Продуктивный тип - завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип - не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения - характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; "раздевание" вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.

Адсорбция

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т.е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбируется на определенных участках клеточной мембраны - так называемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 10 4 до 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Проникновение в клетку

Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

"Раздевание"

Процесс "раздевания" заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. "Раздевание" вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его "раздевания". Конечными продуктами "раздевания" являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.

Биосинтез компонентов вируса

Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.

Реализация генетической информации вируса осуществляется в соответствии с процессами транскрипции, трансляции и репликации.

Формирование (сборка) вирусов

Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически "узнавать" друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

репродукция вирус клетка адсорбция

4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки

Различают два основных типа выхода вирусного потомства из клетки. Первый тип - взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется "почка", содержащая нуклеокапсид. Затем "почка" отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 ч (вирусы гриппа, натуральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

Живые противовирусные вакцины, какими способами они получены

Живые вакцины изготовляют из живых ослабленных (аттенуированных) штаммов вирусов. Такие штаммы должны обладать следующими стабильными, наследственно закрепленными свойствами:

утрата вирулентности исходного вируса;

сохранение способности приживаться и размножаться в организме;

сохранение специфической иммуногенности исходного патогенного штамма;

способность вызывать образование иммунитета у привитых животных.

Введенные в организм вакцинные штаммы должны вызывать не заболевание, а особое, качественно новое состояние - так называемый вакцинальный процесс.

Получение вакцинных штаммов с перечисленными свойствами удается путем культивирования вирулентных вирусов (обычно выделенных от больных животных в очаге инфекции) в условиях, не соответствующих их природным потребностям адаптирования к маловосприимчивым или невосприимчивым животным, а также выращивания в развивающихся куриных эмбрионах или в культуре клеток. При многократном пассировании на живых системах вирусы постепенно теряют патогенность, сохраняя антигенные свойства.

К перспективным методам получения вакцинных штаммов следует отнести селекцию природно-ослабленных штаммов вирусов при атипично или латентно протекающих инфекциях, а также селекцию мутантов, индуцированных физическими и химическими мутагенами (пониженная температура культивирования, ультрафиолетовое облучение, воздействие ультразвуком и др.).

Для приготовления живых вакцин используют также гетеротипичные антигенно-родственные апатогенные штаммы: штаммы вируса оспы голубей для профилактики оспы кур, вирус кори для защиты собак от чумы плотоядных, вакцинный штамм вируса чумы свиней для профилактики диареи крупного рогатого скота и др.

Технология изготовления живых вакцин сводится к культивированию вакцинного штамма вируса в какой-либо биологической живой системе (животные, куриные эмбрионы, культуры тканей и клеток). Полученный вируссодержащий материал подвергают очистке от балластных (клеточных компонентов и др.) веществ. Далее проводят контроль на чистоту (посев на бактериальные питательные среды), безвредность и активность на восприимчивых животных. При соответствии этим требованиям полученный материал разливают по ампулам или флаконам и подвергают лиофильному высушиванию.

Живые вакцины, полученные на основе аттенуированных вакцинных штаммов вирусов, обладают рядом преимуществ перед инактивированными. Главное из них - напряженность и длительность создаваемого ими иммунитета, приближающегося к постинфекционному. Важное достоинство большинства живых вакцин - однократное введение. При этом происходит репродукция вакцинного штамма в организме в результате образования и поступления в организм в течение длительного времени активных антигенных субстанций, обеспечивающих формирование напряженного иммунитета. Вторым преимуществом живых вакцин является возможность вводить их не только подкожно, но и перорально, интраназально и аэрозольно.

Однако живые вакцины наряду с отмеченными преимуществами имеют и ряд недостатков, связанных с тем, что действующее начало этих препаратов (живых вирусов) весьма чувствительно к неблагоприятным факторам, возникающим в производстве, при транспортировке, хранении и применении, а также не исключена возможность реверсии вируса.

В специальных требованиях предусматривается качество компонентов живых вакцин и особенно чистота вируссодержащего материала. При получении живых вакцин на культурах клеток, в куриных эмбрионах субстраты могут оказаться контаминированными посторонними вирусами, микоплазмами, бактериями, и это может привести к серьезным последствиям.

Живые вакцины не содержат консервантов, поэтому при вскрытии ампул и растворении их содержимого необходимо строго соблюдать правила асептики. При накожном методе вакцинации необходимо использование для предварительной обработки таких дезинфицирующих средств, которые длительное время сохраняются на месте применения препарата.

Общая характеристика онкогенных ретровирусов

Онкогенные Вирусы

Впервые вирусы связали со злокачественными новообразованиями в своих наблюдениях Эллерман и Банг (1908), которые отметили, что способ передачи лейкемии у домашней птицы напоминает таковой при инфекционной болезни. Раус (1911) показал, что солидная злокачественная опухоль, куриная саркома вызывается вирусом; за это открытие он был запоздало удостоен Нобелевской премии в 1966. Вирусы, вызывающие опухоли у млекопитающих были впервые обнаружены Шоупом, который выделил вирус фибромы кролика в 1932 и вирус папилломы в 1933. Хотя папиллома является доброкачественной опухолью, она может малигнизироваться. Биттнер (1936) предположил, что рак молочной железы у мышей может быть вызван вирусом, передаваемым от матери потомству через грудное молоко. В течение 1950-ых годов было выявлено большое количество вирусов, вызывающих лейкемию у грызунов. Большой интерес был вызван открытием Стюарт и Эдди (1957) вируса полиомы, который при введении новорожденным грызунам мог вызывать развитие большого количество разнообразных опухолей. Трентином (1962) было показано, что введение некоторых типов аденовирусов человека новорожденным хомякам вызывало развитие сарком. Бёркит (1963) выявил специфическое географическое распространение лимфом у африканских детей и предположил, что они могут быть вызваны вирусом, передающимся насекомыми. Выделенный из лимфомы Бёркита вирус Эпштейна-Барр было предложено считать этиологическим агентом лимфомы Бёркита. Много вирусов было выделено из человеческих опухолей или обнаруживалось электромикроскопически в пораженных клетках и тканях, но большинство из них были только "вирусами-пассажирами". присутствующими в поражениях, а не вызывающими их агентами.

Вирусы, которые вызывают опухоли у своих естественных хозяев или у подопытных животных, или же стимулируют злокачественное преобразование в культуре клеток, известны как онкогенные вирусы. Трансформация представляет собой различные изменения, которые сопровождают преобразование нормальной клетки в злокачественную. Трансформация из нормальных в злокачественные клетки является многостадийным процессом, и может быть частичной или полной. Например, некоторые вирусные агенты могут превращать инфицированные клетки в "неумирающие", так что они становятся способными к непрерывному размножению в культуре, без приобретения других особенностей злокачественного развития.

Таблица 3. Онкогенные вирусы

ВИРУСЫ РНК

I. Retroviruses:

Вирусы лейкозов птиц

Вирусы лекцозов мышей

Вирусы рака молочных желез мышей

Лейкозно-саркоматозные вирусы различных животных

Вирусы Т-клеточной лейкемии человека

ВИРУСЫ ДНК

Папилломавирусы человека, кроликов и других животных

Полиомавирус

Обезьяний вирус 40

BKиJCвирусы

Вирус контагиозного моллюска

Вирус Яба

Вирус фибромы Шоупа

III. Аденовирусы

Многие типы аденовирусов человека и животных

IV. HERPESVIRUSES

1. Вирус болезни Марека

2. Вирус опухоли лягушек Люке

3. Epstem-Barrвирус

4. Вирусы простого герпеса типов 1 и 2

5. Вирус цитомегалии

V. Вирус гепатита B

Преобразованные клетки изменены по форме и теряют способность к "контактному торможению" так что вместо роста одним слоем, они растут скоплениями, одна над другой, формируя "микроопухоли". Участки трансформации могут быть легко выявлены и используются при исследовании онкогенных вирусов, таких как вирус саркомы Рауса.

Около четверти из приблизительно 600 вирусов животных обладают онкогеным потенциалом (Таблица 1). Вирусы, связанные с раковыми образованиями людей описаны в Таблице 2. Среди онкогенных вирусов есть и РНК - и ДНК-содержащие. В то время как все онкогенные РНК-содержащие вирусы (которые раньше назывались онкорнавирусы) принадлежат к единственному семейству (Ретровирусы), онкогенные вирусы встречаются среди всех основных групп ДНК-содержащих вирусов, кроме парвовирусов. Ретровирусы ответственны за естественно возникающую лейкемию и саркому у нескольких видов животных. Среди ДНК-содержащих вирусов, некоторые герпесвирусы вызывают злокачественные опухоли у их естественных хозяев.

Ретровирусы .

Ретровирусы - оболочечные, сферические вирусы, которые выходят почкованием через клеточную мембрану хозяина. Они имеют приблизительно 100 нм в диаметре. Геном состоит из двух идентичных линейных односпиральных молекул РНК. Икосаэдральный нуклеокапсид содержит спиральный рибонуклеопротеид и окружен оболочкой состоящей из гликопротеидов и липидов.

Характерная особенность ретровирусов - присутствие в вирионе необычного фермента - РНК зависимой ДНК полимеразы или обратной транскриптазы (отсюда имяretro , о значающее обратно). В отличие от классической транскрипции генетической информации от ДНК на РНК, фермент обратная транскриптаза готовит ДНК-копию РНК-генома ретровируса - первоначально РНК-ДНК гибрид, а затем его двухспиральную ДНК-форму. Двухспиральная ДНК-форма ретровирусного генома, называемаяпровирусом , и нтегрирует в ДНК инфицированной клетки-хозяина. Именно от провируса транслируются все ретровирусные белки. Заражение онкогенным ретровирусом не ведет к цитолизу или гибели инфицированных клеток, но провирус остается интегрированным в ДНК клетки-хозяина до конца жизни клетки и воспроизводится вместе с клеточным геномом при размножении клеток.

В то время как все онкогенные РНК-содержащие вирусы принадлежат семейству Retroviridae , н е все ретровирусы онкогенны. СемействоRetroviridae классифицируется на три подсемейства.

1. Oncovirinae включает все онкогенные РНК содержащие вирусы (прежде называемое онкорнавирус).

2. Spumavirinae содержит неонкогенные "пенистые вирусы" (spuma = пена) вызывающие бессимптомные инфекции у нескольких видов животных и представляющие собой загрязняющие примеси первичных культур клеток, в которых они вызывают пенистое перерождение.

3. Lentivirinae включает как вирусы вызывающие "замедленные инфекции" (lentus = медленно) у животных, так и вирусы человеческих и животных иммунодефицитов.

Ретровирусы широко распространены; их находят почти у всех позвоночных, включая животных, птиц и рептилий. Основываясь на круге хозяев и типах вызываемых болезней, онкогенные Ретровирусы можно разделить на следующие группы:

1 . Вирусы лейкозно-саркоматозного комплекса птиц . Группа антигенно родственных вирусов, которые вызываютAvianлейкозы (вирусы лимфоматоза, миелобластоза и эритробластоза) или саркому у домашних птиц (вирус саркомы Рауса, ВСР).

2 . Вирусы мышиных лейкозов . Эта группа состоит из нескольких штаммов вирусов мышиной лейкемии и вирусов саркомы, названных по имени исследователи впервые описавших их (например Гросс, Френд, Молони, Раушер).

3 . Вирус опухоли молочной железы мышей . Этот вирус имеется в некоторых линиях мышей, у которых часто встречается рак молочной железы. Он известен как "молочный фактор" или "вирус Биттнера". Он размножается в молочной железе и передается от матери потомству через грудное молоко. Мыши могут быть заражены через рот, через подкожную или внутрибрюшинную инъекцию. Рак молочной железы развивается только у мышей восприимчивых линий после латентного периода в 6-12 месяцев.

4 . Вирусы лейкозов и сарком других животных . Большое количество вирусов было выделено из лейкозов и сарком различных видов животных - кошек, хомяков, крыс, морских свинок и обезьян.

5 . Т-лимфотропные вирусы человека (HTLV ). Ретровирусы, названные "человеческие Т-лимфотропные вирусы" были выделены в 1980 из культур клеток от взрослых больных кожной T-клеточной лимфомой (грибковый микоз) и лейкемией (синдром Сезара) в США. Подобные вирусы были выделены от больных Т-клеточной лейкемией в Японии и Карибском бассейне. HTLV1-го типа имеются во всем мире, но распространенность заболеваний ограничена эндемичными областями. Помимо Т-клеточной лейкемии,HTLV-Iтакже связан с тропическим спастическим парапарезом, демиелинирующей болезнью. Вирус в основном инфицирует T4 (CD4) клетки. На инфицированных T-клетках обнаруживается большое количество рецепторов к ИЛ-2. Близко родственныеHTLV-IIтакже связаны с T-клеточными злокачественными новообразованиями. Известно, чтоHTLV-инфекция передается при переливании крови и другими способами введения лейкоцитов.

Видовая специфичность . Ретровирусы обычно поражают только один вид хозяина, специфика обусловлена главным образом присутствием вирусных рецепторов на поверхности клетки-хозяина. В зависимости от их способности расти в клетках другого вида, ретровирусы делятся на 1) экотропные (размножаются только в клетках естественного хозяина);

2) амфитропные (размножаются в клетках естественного и чужих видов); и 3) ксенотропные (размножаются только в клетках чужих видов, но не в клетках естественных хозяев).

Передача вирусов . Возможны два типа передачи ретровирусов. Экзогенные ретровирусы распространяются горизонтально. Большинство онкогенных ретровирусов являются экзогенными. Эндогенные ретровирусы передаются вертикально от родителей потомствупровирусом , и нтегированным в геном половых клеток. Эндогенный ретровирусный провирус ведет себя как клеточный ген и подчинен регулирующему влиянию клетки-хозяина. Эндогенные ретровирусы обычно "молчащие", не трансформируют клетки и не вызывают какое-либо заболевание. Они могут быть обнаружены либо из-за "активации" после воздействия радиации или химикатов, или методом гибридизации нуклеиновой кислоты.

Резистентность . Ретровирусы неустойчивы, инактивируются при 56 о С в течение 30 минут, слабыми кислотами, эфиром и формалином. Они устойчивы при - 30 о С

Морфология . Ретровирусы существуют в виде четырех морфологических типов. Частицы типа А существуют только внутри клеток. Они имеют 60-90 нм в диаметре и содержат кольцевидный нуклеоид, окруженный мембраной. Они могут являться формой предшественника других типов. Типы B, C и D являются внеклеточными. Диаметр В частицы - 100-130nm, с эксцентрическим нуклеоидом и несут поверхностные шипики. Частицы С типа имеют центральный нуклеоид и гладкую поверхностную мембрану. ЧастицыDтипа еще не охарактеризованы. Они имеют эксцентрический нуклеоид и несут короткие поверхностные шипики.

Большинство ретровирусов - частицы С типа. Вирус рака молочных железы мыши - частица типа B, а вирус рака молочной железы обезьян Мэзон-Пфайзера - частица типа D.

Антигены . Имеется два типа антигенов - типоспецифические гликопротеидные антигены, расположенные на оболочке, и группо-специфические нуклеопротеидные антигены, расположенные в ядре вириона. Перекрестные реакции между поверхностными антигенами ретровирусов от различных видов хозяев не наблюдаются.

Геномная структура . Ретровирусы имеют относительно простую геномную структуру.

Провирус стандартного ретровируса (такого как недефектный вирус лейкоза птиц или мышей) состоит из трех генов, требуемых для вирусной репликации - gag,pol, иenv. Ген gag кодирует белки нуклеокапсида, которые являются группоспецифическими антигенами , ген pol кодирует РНК-зависимую ДНК-полимеразу, ген env кодирует гликопротеиды оболочки. С обоих концов провируса имеется длинный концевой повтор (LTR), непосредственно связывающийся с ДНК клетки-хозяина. LTR-участки обеспечивают контроль регуляции функции генов провируса.

Некоторые ретровирусы (трансрегулирующие вирусы) типа HTLV или HIV несут четвертый ген tat после env гена. Это - трансактивирующий ген, который регулирует функцию вирусных генов.

Стандартные онкогенные ретровирусы типа вирусов хронической лейкемии является медленными трансформирующими вирусами , т о есть они имеют низкий онкогенный потенциал и стимулируют злокачественное преобразование вообще только клеток крови после длительного латентного периода. Они не трансформирует культивируемые клетки. Они способны к нормальной репликации. Напротив, острые трансформирующие вирусы - высоко онкогенны и вызывают злокачественное развитие после короткого латентного периода в недели или месяцы. Они могут вызывать различные типы сарком, карцином, лейкозов и также трансформировать клетки в культуре. Однако, наиболее сильные трансформирующие вирусы неспособны нормально реплицироваться, потому что они содержат в своем геноме дополнительный ген, вирусный онкоген (V - onc ген) который заменяет некоторых из генов, существенных для репликации вируса. ТакиеV-onc вирусы могут репродуцироваться только при коинфекции со стандартным помощником ретровируса. Вирус саркомы Рауса, который несет онкогенsrc (произносится "сарк"), наиболее хорошо изученный среди острых трансформирующих вирусов, отличается способностью реплицироваться, то есть он может нормально реплицироваться, потому что обладает полным комплектом gag , pol , и env генов. Большинство острых трансформирующих вирусов дефектны в отношении репликации.

Список используемой литературы

1. Медицинская микробиология, вирусологии и иммунология - Зверев В.В. - Учебник в 2-х томах. Год выпуска: 2010

2. Пиневич А.В., Сироткин А.К., Гаврилова О.В., Потехин А.А. П32 Вирусология: учебник. СПб.: Изд-во С. - Петерб. ун-та, 2012. - 432 с

Размещено на Allbest.ru

...

Подобные документы

    Систематика, морфология, антигенные свойства. Патогенность, место репродукции, восприимчивые животные, лабораторные модели. Устойчивость вируса. Характеристика болезни вызываемой вирусом. Определение(синономы). Эпизоотологические данные. Патогенез.

    контрольная работа , добавлен 06.11.2007

    Специфические факторы противовирусного иммунитета. Два варианта выдачи иммунного ответа в форме биосинтеза антител. Вирус инфекционного бронхита птиц: возбудитель, диагностика. Методы лечения вируса ящура. Культивирование вирусов в культуре клеток.

    курсовая работа , добавлен 17.11.2010

    Понятие, сущность, типы, динамика и способы распространения эпифитотия, а также роль патогена, растения-хозяина и окружающей среды в его развитии. Анализ путей передачи вирусов растений. Описание мер борьбы, по защите растений от инфекционных заболеваний.

    реферат , добавлен 14.11.2010

    Роль условно-патогенных бактерий и вирусов в этиопатогенезе острых кишечных и респираторных болезней. Применение для профилактики и лечения специфических поливалентных вакцин и сывороток крови. Пути повышения резистентности сельскохозяйственных животных.

    курсовая работа , добавлен 05.01.2011

    Негативные последствия болезней, вызываемых слабопатогенными вирусами. Методы выделения вирусов из материала больных животных и трупов. Возбудитель и эпизоотология оспы птиц, ее профилактика и лечение. Клинические признаки и диагностика бешенства у коров.

    контрольная работа , добавлен 23.10.2013

    Уравновешивание популяции вредителей. Основные особенности функционирования экологических систем. Биологическая борьба с вредными видами организмов. Численность популяций отдельных видов. Охрана полезных организмов и вирусов и их массовая интродукция.

    реферат , добавлен 21.07.2011

    Характеристика понятия эпифитотии. Ознакомление с путями передачи вирусов от одного растения к другому. Рассмотрение симптом местных, прогрессирующих и повсеместных эпифитотий. Описание основных методов защиты растений от инфекционных заболеваний.

    презентация , добавлен 07.11.2013

    Таксономия, этапы репродукции вируса ринотрахеита кошек. Основной путь заражения. Особенности культивирования в различных живых системах. Клинические признаки заболевания. Принципы диагностики герпес-вирусной инфекции методом полимеразной цепной реакции.

    реферат , добавлен 02.06.2015

    Определение и история открытия заболевания. Этиология вируса африканской чумы свиней. Эпизоотология, клинические признаки и патогенез. Основные методы выделения вируса и выявления антигенов. Патологоанатомические изменения, дифференциальная диагностика.

    курсовая работа , добавлен 20.11.2013

    Таксономия вируса африканской чумы свиней, характеристика вириона, распространение, степень опасности и ущерб. Антигенные свойства вируса АЧС. Гемадсорбирующая активность и культуральные свойства. Этапы лабораторной диагностики и методы профилактики.

Репродукция вирусов

Для вирусов характерен дизъюнктивный (от disjuncus -- разобщенный) способ репродукции-размножения. Потомство вируса возникает в результате сборки нуклеиновых кислот и белковых субъединиц, которые синтезируются раздельно клеткой хозяина. Проникновение вируса в клетку и воспроизведение себе подобных проходит в несколько фаз: проникновение в клетку хозяина, синтез ферментов, необходимых для репликации вирусных нуклеиновых кислот, синтез вирусных частей, сборка и композиция зрелых вирионов, выход зрелых вирионов из клетки.

Фаза I -- адсорбция вириона на поверхности клетки.

Протекает в две стадии: первая -- неспепифическая, когда вирус удерживается на поверхности клетки благодаря возникновению противоположных зарядов между отдельными участками мембраны клеток и вируса. Эта фаза взаимодействия вируса с клеткой обратима, на нее оказывают влияние такие факторы, как рН и солевой состав среды.

Вторая стадия -- специфическая, когда взаимодействуют специфические рецепторы вируса и рецепторы клетки, комплементарные друг другу. По химической природе рецепторы клетки могут быть мукопротеидашг (или мукополисахаридами) и липопротеидами. Разные вирусы фиксируются на разных рецепторах: вирусы гриппа, парагриппа, аденовирусы -- на мукопротеидах, а вирусы клещевого энцефалита, полиомиелита -- на липопротеидах.

Фаза II -- проникновение вируса в клетку. Электроноскопические наблюдения за процессом проникновения вирусов в чувствительные к ним клетки показали, что оно осуществляется посредством механизма, напоминающего пиноцитоз, или, как чаще называют, виропексис. В месте адсорбции вируса клеточная стенка втягивается внутрь клетки, образуется вакуоль, в которой оказывается вирион. Параллельно клеточные ферменты (липазы и протеазы) вызывают депротеинизацию вириона -- растворение белковой оболочки и освобождение нуклеиновой кислоты.

Фаза III -- скрытый период (период эклипса -- исчезновения). В этот период в клетке невозможно определить наличие инфекционного вируса ни химическими, ни электронно-микроскопическими, ни серологическими методами. О сущности этого явления и его механизмов пока известно мало. Предполагается, что в скрытой фазе нуклеиновая кислота вируса проникает в хромосомы клетки и вступает с ними в сложные генетические взаимоотношения.

Фаза IV -- синтез компонентов вириона. В этой фазе вирус и клетка представляют единое целое, вирусная нуклеиновая кислота выполняет генетическую функцию, индуцирует образование ранних белков и изменяет Функцию рибосом. Ранние белки подразделяются на:

а) белки-ингибиторы (репрессоры), подавляющие метаболизм клеток

б) белки-ферменты (полимеразы), обеспечивающие синтез вирусных нуклеиновых кислот.

Синтез нуклеиновых кислот и белков протекает неодновременно и в разных структурных частях клетки. У вирусов, содержащих ДНК или РНК, эти процессы имеют некоторые различия и особенности.

Фаза V -- формирование зрелых вирионов. Процесс «сборки» вируса осуществляется в результате соединения компонентов вирусной частицы. У сложных вирусов в этом процессе принимают участие клеточные структуры и происходит включение в вирусную частицу липидпых, углеводных, белковых компонентов клетки хозяина.

Процесс формирования вирионов начинается спустя определенное время после того, как начал осуществляться синтез составляющих их компонентов. Продолжительность этого периода довольно вариабельна и предопределяется природой вируса -- для РНК-содержащих обычно короче, чем для ДНК-вирусов. Например, продукция полных вирусных частиц осповакцины начинается приблизительно спустя 5--6 ч после инфицирования клеток и продолжается в течение последующих 7--8 ч, т. е. после того как синтез вирусной ДНК уже завершен.

Между нуклеиновой кислотой и соответствующим белковыми субъединицами образуются очень прочные связи, о чем свидетельствуют трудности отделения белка от вирусной нуклеиновой кислоты. Большую прочность вирусной частице придают входящие в ее состав углеводы и особенно липиды.

Формирование вирионов, так же как и синтез компонентов вируса, происходит в разных местах клетки, при участии различных клеточных структур. После завершения процесса формирования образуется зрелая дочерняя вирусная частица, обладающая всеми свойств вами родительского вириона. Но иногда наблюдается образование так называемых неполных вирусов, которые состоят или только из нуклеиновой кислоты, или из белка, или из вирусных частиц, формирование которых остановилось в какой-то промежуточной стадии.

Фаза VI -- выход зрелых вирионов из клетки. Существуют два основных механизма выхода зрелых вирионов из клетки: 1) выход вириона с помощью почкования. В этом случае наружная оболочка вириона происходит из клеточной мембраны, она содержит как материал клетки хозяина, так и вирусный материал; 2) выход зрелых вирионов из клетки через бреши в мембране. Эти вирусы не имеют наружной оболочки. При таком механизме выхода вирусов клетка, как правило, погибает и в среде появляется большое количество вирусных частиц.

Особенности репродукции вирусов

1. Периоды осуществления продуктивной вирусной инфекции

2. Репликация вируса

3. Трансляция

1. Продуктивная вирусная инфекция осуществляется в 3 периода:

· начальный период включает стадии адсорбции вируса на клетке, проникновения в клетку, дезинтеграции (депротеинизации) или "раздевания" вируса. Вирусная нуклеиновая кислота была доставлена в соответствующие клеточные структуры и под действием лизосомальных ферментов клетки освобождается от защитных белковых оболочек. В итоге формируется уникальная биологическая структура: инфицированная клетка содержит 2 генома (собственный и вирусный) и 1 синтетический аппарат (клеточный);

· после этого начинается вторая группа процессов репродукции вируса, включающая средний и заключительный периоды, во время которых происходят репрессия клеточного и экспрессия вирусного генома. Репрессию клеточного генома обеспечивают низкомолекулярные регуляторные белки типа гистонов, синтезируемые в любой клетке. При вирусной инфекции этот процесс усиливается, теперь клетка представляет собой структуру, в которой генетический аппарат представлен вирусным геномом, а синтетический аппарат -- синтетическими системами клетки.

2. Дальнейшее течение событий в клетке направлено на репликацию вирусной нуклеиновой кислоты (синтез генетического материала для новых вирионов) и реализацию содержащейся в ней генетической информации (синтез белковых компонентов для новых вирионов). У ДНК-содержащих вирусов, как в прокариотических, так и в эукариотических клетках, репликация вирусной ДНК происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. При этом у однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить -- так называемая репликативная форма, которая служит матрицей для дочерних молекул ДНК.

3. Реализация генетической информации вируса, содержащейся в ДНК, происходит следующим образом: при участии ДНК-зависимой РНК-полимеразы синтезируются и-РНК, которые поступают на рибосомы клетки, где и синтезируются вирусспецифические белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина, это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.

У РНК-содержащих вирусов процессы репликации их генома, транскрипции и трансляции генетической информации осуществляются иными путями. Репликация вирусных РНК, как минус-, так и плюс-нитей, осуществляется через репликативную форму РНК (комплементарную исходной), синтез которой обеспечивает РНК-зависимая РНК-полимераза -- это геномный белок, который есть у всех РНК-содержащих вирусов. Репликативная форма РНК минус-нитевых вирусов (плюс-нить) служит не только матрицей для синтеза дочерних молекул вирусной РНК (минус-нитей), но и выполняет функции и-РНК, т. е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляцию).

У плюс-нитевых РНК-содержащих вирусов функцию трансляции выполняют ее копии, синтез которых осуществляется через репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.

У некоторых РНК-содержащих вирусов (реовирусы) имеется совершенно уникальный механизм транскрипции. Он обеспечивается специфическим вирусным ферментом -- ревертазой (обратной транскриптазой) и называется обратной транскрипцией. Суть ее состоит в том, что вначале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется,вторая нить и формируется двунитевой ДНК-транскрипт. С него обычным путем через образование и-РНК происходит реализация информации вирусного генома.

Результатом описанных процессов репликации, транскрипции и трансляции является образование дочерних молекул вирусной нуклеиновой кислоты и вирусных белков, закодированных в геноме вируса.

После этого наступает третий, заключительный период взаимодействия вируса и клетки. Из структурных компонентов (нуклеиновых кислот и белков) на мембранах цитоплазматического ретикулума клетки собираются новые вирионы. Клетка, геном которой был репрессирован (подавлен), обычно гибнет. Вновь сформировавшиеся вирионы пассивно (в результате гибели клетки) или активно (путем почкования) покидают клетку и оказываются в окружающей ее среде.

Таким образом, синтез вирусных нуклеиновых кислот и белков и сборка новых вирионов происходят в определенной последовательности (разобщены во времени) и в разных структурах клетки (разобщен в пространстве), в связи с чем способ репродукции вирусов и был назван дизъюнктивным (разобщенным). При абортивной вирусной инфекции процесс взаимодействия вируса с клеткой по тем или иным причинам прерывается до того, как произошло подавление клеточного генома. Очевидно, что в этом случае генетическая информация вируса реализована не будет и репродукции вируса не происходит, а клетка сохраняет свои функции неизменными. вирион клетка вирус

При латентной вирусной инфекции в клетке одновременно функционируют оба генома, а при вирусиндуцированных трансформациях вирусный геном становится частью клеточного, функционирует и наследуется вместе с ним.

Список литературы

1. В. А. Сергеев и др., «Ветеринарная вирусология». - Москва, 2002.

2. Вирусология. Под редакцией Филдса Б., Найта Д., тт. 1-3, М., 1989.

3. Госманов Р.Г., Колычев Н.М. Ветеринарная вирусология. М.: КолосС. - 2003.

4. Белоусова Р.В., Преображенская Э.А., Третьякова И.В. Ветеринарная вирусология: Учебник для вузов (под ред. Белоусовой Р.В.). - М.: КолосС. - 2007

Взаимодействие вирусов с клетками хозяев и репродукция вирусов.

Вирусы проходят в клетке сложный цикл развития. Морфогенез вирусов представляет собой основной этап этого развития и состоит из формообразовательных процессов приводящих к образованию вириона как заключению формы развития вируса. Онтогенез и репродукция развития вируса регулируется геномом.

В 50-х годах установлено, что размножение вируса происходит путем репродукции, т.е. воспроизведение нуклеиновых и белков с последующей сборкой вириона. Эти процессы происходят в разных частях клетки, например в ядре и цитоплазме (дизъюнктивный способ репродукции). Вирусная репродукция представляет собой уникальную форму, выражения чужеродной инфекции в клетках человека, животных, насекомых и бактерий.

Морфогенез регулируется с помощью морфогенетических генов. Существует прямопропорциональная зависимость между сложностью ультраструктуры вириона и его морфогенеза. Чем сложнее организация вириона, тем больший путь развития проходит вирус. Весь этот процесс осуществляется с помощью специальных ферментов. Т.к. вирусы не имеют собственного метаболизма то нуждается в ферментах. Однако у вирусов обнаружено свыше 10 ферментов, разных по происхождению и функциональному значению.

По происхождению: вирионные, вирус-индуцированные, клеточные, модифицированные вирусами. Первые входят в состав многих ДНК и РНК содержащих вирусов. ДНК-зависимая РНК-полимераза, протеинкиназа, АТФ-аза, рибонуклеаза, РНК-зависимая РНК-полимераза, экзонуклеаза и другие.

К вирионным формам относятся: гемоглютиннин и нейраминидаза, лизоцим.

Вирус-индуцирующие – это ферменты, структура которых закодирована в геноме, а синтез происходит на рибосоме хозяина – ранние вирионные белки.

Клеточные – включают ферменты клетки хозяина, не являются вирусоспецифическими, однако при взаимодействии с вирусами активность может модифицироваться.

По функциональному значению ферменты делятся на 2 группы:

Участвующие в репликации и транскрипции;

Нейраминидаза, лизоцим и АТФ-аза, которые способствуют проникновению вируса в клетку и выходу зрелых вирионов из клетки.

Репродукция вирионов характеризуется сменой стадий:

Транскрипция - переписывание ДНК на РНК – осуществляется с помощью фермента РНК-полимеразы, продуктами является биосинтез и-РНК. ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. РНК-содержащие вирусы ф-ю и-РНК выолняет сам геном. У некоторых РНК-содержащих вирусов передача генетической информации осуществляется по формуле РНК-РНК-белок. К этой группе вирусов относятся – пикорновирусы, корновирусы.

Синтез белка происходит в результате трансляции в РНК.

Согласно современным данным различают 3 основных периода в цикле репродукции:

1.Начальный (подготовительный)2.Средний (латентный)3.Конечный (заключительный)

Каждый из периодов включает ряд этапов:

Первый этап

1.Адсорбция вируса на клетке.

2.Проникновение в клетку.

3.Депротеинизация (высвобождение нуклеиновой кислоты).

Второй этап

1.Биосинтез ранних вирусных белков

2.Биосинтез вирусных компонентов

Третий этап

1.Формирование зрелых вирионов

2.Выход зрелых вирионов из клетки.

1.Адсорбция – физико-химический процесс, является следствием разности зарядов. Эта стадия обратима на ее исход оказывает влияние кислотность среды, температура и другие процессы.

Основную роль в адсорбции вируса играет взаимодействие вируса с комплементарными рецепторами клетки. По химической природе они относятся к мукополипротейдам. На степень скорости адсорбции влияют гормоны действующие на рецепторы. Адсорбция вируса может и не наступить, что связано с различной чувствительностью клеток к вирусам. Чувствительность, в свою очередь определяется:

Наличием в клеточной оболочке и цитоплазме ферментов, способных разрушить оболочку и освободить нуклеиновую кислоту.

Наличием ферментов, материала, обеспечивающих синтез вирусных компонентов.

2.Проникновение вируса в клетку:

Вирус проникает 3 путями – путем непосредственного впрыскивания (характерно для фагов); путем разрушения клеточной оболочки (путь сплавления – характерно для вирусов растений); путем пиноцитоза (характерен для вирусов позвоночных).

3.Репродукция ДНК-содержащих вирусов.

Под воздействием ферментов у ДНК-содержащих вирусов осуществляется синтез и-РНК, и-РНК посылается на рибосомы чувствительной клетки. На рибосомах клетки начинается синтез ранних вирионных белков (наделены свойствами – ферментами, блокируют клеточный метаболизм).

Ранние вирионные белки дают начало образованию ранних вирионных кислот.

По мере накопления ранних вирионных белков они блокируют себя и процесс перестраивается на рибосомном аппарате. Идет сборка вирионов и вновь сформировавшиеся вирионы покидают клетку-мать.

4.Выход вириона из клетки:

1.Просачиваются через оболочку клетки и одеваются суперкапсидом, в состав в состав которого включаются компоненты клетки: липиды, полисахариды. В данном случае клетка сохраняет свою жизнедеятельность затем погибает. В некоторых случаях в процессе репродукции процессы могут происходить в течение нескольких лет, но жизнедеятельность сохраняется. При этом способе зрелые вирионы из клетки выходят постепенно и относительно длительно. Этот путь характерен для сложных вирусов, имеющих двойную оболочку.

Аномальные вирусы.

В процессе репродукции образуются различные аномальные вирусы. Усилиями академика Жданова в последние годы были открыты псевдовирусы, состоящие из РНК-вируса и белков клетки, образующих капсид. Они обладают инфекционными свойствами, но в силу особенности капсида не поддаются действию антител, образующих ответ на этот вирус.

Явление образования таких вирусов объясняется длительным вирусоносительством при наличии в организме специфических АТ.

Причинами формирования таких вирионов являются:

1.Высокая множественность, в результате чего клетка не в состоянии обеспечить все потомство энергетическим материалом.

2.Действие интерферона – он влияет на синтез ДНК и РНК вирусов.


Похожая информация.


Взаимодействие вирусов с клетками хозяев и репродукция вирусов.

Вирусы проходят в клетке сложный цикл развития. Морфогенез вирусов представляет собой основной этап этого развития и состоит из формообразовательных процессов приводящих к образованию вириона как заключению формы развития вируса. Онтогенез и репродукция развития вируса регулируется геномом.

В 50-х годах установлено, что размножение вируса происходит путем репродукции, т.е. воспроизведение нуклеиновых и белков с последующей сборкой вириона. Эти процессы происходят в разных частях клетки, например в ядре и цитоплазме (дизъюнктивный способ репродукции). Вирусная репродукция представляет собой уникальную форму, выражения чужеродной инфекции в клетках человека, животных, насекомых и бактерий.

Морфогенез регулируется с помощью морфогенетических генов. Существует прямопропорциональная зависимость между сложностью ультраструктуры вириона и его морфогенеза. Чем сложнее организация вириона, тем больший путь развития проходит вирус. Весь этот процесс осуществляется с помощью специальных ферментов. Т.к. вирусы не имеют собственного метаболизма то нуждается в ферментах. Однако у вирусов обнаружено свыше 10 ферментов, разных по происхождению и функциональному значению.

По происхождению: вирионные, вирус-индуцированные, клеточные, модифицированные вирусами. Первые входят в состав многих ДНК и РНК содержащих вирусов. ДНК-зависимая РНК-полимераза, протеинкиназа, АТФ-аза, рибонуклеаза, РНК-зависимая РНК-полимераза, экзонуклеаза и другие.

К вирионным формам относятся: гемоглютиннин и нейраминидаза, лизоцим.

Вирус-индуцирующие - это ферменты, структура которых закодирована в геноме, а синтез происходит на рибосоме хозяина - ранние вирионные белки.

Клеточные - включают ферменты клетки хозяина, не являются вирусоспецифическими, однако при взаимодействии с вирусами активность может модифицироваться.

По функциональному значению ферменты делятся на 2 группы:

  • --- Участвующие в репликации и транскрипции;
  • --- Нейраминидаза, лизоцим и АТФ-аза, которые способствуют проникновению вируса в клетку и выходу зрелых вирионов из клетки.

Репродукция вирионов характеризуется сменой стадий:

Транскрипция - переписывание ДНК на РНК - осуществляется с помощью фермента РНК-полимеразы, продуктами является биосинтез и-РНК. ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. РНК-содержащие вирусы ф-ю и-РНК выолняет сам геном. У некоторых РНК-содержащих вирусов передача генетической информации осуществляется по формуле РНК-РНК-белок. К этой группе вирусов относятся - пикорновирусы, корновирусы.

Синтез белка происходит в результате трансляции в РНК.

Согласно современным данным различают 3 основных периода в цикле репродукции:

  • 1. Начальный (подготовительный)
  • 2. Средний (латентный)
  • 3. Конечный (заключительный)

Каждый из периодов включает ряд этапов:

Первый этап

  • 1. Адсорбция вируса на клетке.
  • 2. Проникновение в клетку.
  • 3. Депротеинизация (высвобождение нуклеиновой кислоты).

Второй этап

  • 1. Биосинтез ранних вирусных белков
  • 2. Биосинтез вирусных компонентов

Третий этап

  • 1. Формирование зрелых вирионов
  • 2. Выход зрелых вирионов из клетки.

1. Адсорбция - физико-химический процесс, является следствием разности зарядов. Эта стадия обратима на ее исход оказывает влияние кислотность среды, температура и другие процессы.

Основную роль в адсорбции вируса играет взаимодействие вируса с комплементарными рецепторами клетки. По химической природе они относятся к мукополипротейдам. На степень скорости адсорбции влияют гормоны действующие на рецепторы. Адсорбция вируса может и не наступить, что связано с различной чувствительностью клеток к вирусам. Чувствительность, в свою очередь определяется:

  • - наличием в клеточной оболочке и цитоплазме ферментов, способных разрушить оболочку и освободить нуклеиновую кислоту.
  • - наличием ферментов, материала, обеспечивающих синтез вирусных компонентов.
  • 2. Проникновение вируса в клетку:

Вирус проникает 3 путями - путем непосредственного впрыскивания (характерно для фагов); путем разрушения клеточной оболочки (путь сплавления - характерно для вирусов растений); путем пиноцитоза (характерен для вирусов позвоночных).

3. Репродукция ДНК-содержащих вирусов.

Под воздействием ферментов у ДНК-содержащих вирусов осуществляется синтез и-РНК, и-РНК посылается на рибосомы чувствительной клетки. На рибосомах клетки начинается синтез ранних вирионных белков (наделены свойствами - ферментами, блокируют клеточный метаболизм).

Ранние вирионные белки дают начало образованию ранних вирионных кислот.

По мере накопления ранних вирионных белков они блокируют себя и процесс перестраивается на рибосомном аппарате. Идет сборка вирионов и вновь сформировавшиеся вирионы покидают клетку-мать.

4. Выход вириона из клетки:

1. Просачиваются через оболочку клетки и одеваются суперкапсидом, в состав в состав которого включаются компоненты клетки: липиды, полисахариды. В данном случае клетка сохраняет свою жизнедеятельность затем погибает. В некоторых случаях в процессе репродукции процессы могут происходить в течение нескольких лет, но жизнедеятельность сохраняется. При этом способе зрелые вирионы из клетки выходят постепенно и относительно длительно. Этот путь характерен для сложных вирусов, имеющих двойную оболочку.

Аномальные вирусы.

В процессе репродукции образуются различные аномальные вирусы. Усилиями академика Жданова в последние годы были открыты псевдовирусы, состоящие из РНК-вируса и белков клетки, образующих капсид. Они обладают инфекционными свойствами, но в силу особенности капсида не поддаются действию антител, образующих ответ на этот вирус.

Явление образования таких вирусов объясняется длительным вирусоносительством при наличии в организме специфических АТ.

Причинами формирования таких вирионов являются:

  • 1. Высокая множественность, в результате чего клетка не в состоянии обеспечить все потомство энергетическим материалом.
  • 2. Действие интерферона - он влияет на синтез ДНК и РНК вирусов.
Оглавление темы "Вирусология. Репродукция вирусов. Генетика вирусов.":
1. Вирусология. История вирусологии. Шамберлан. Ру. Пастер. Ивановский.
2. Репродукция вирусов. Репродукция +РНК-вирусов. Пикорнавирусы. Репродукция пикорнавирусов.
3. Тогавирусы. Репродукция тогавирусов. Ретровирусы. Репродукция ретровирусов.

5. Репродукция ДНК-вирусов. Репликативный цикл ДНК-содержащих вирусов. Репродукция паповавирусов. Репродукция аденовирусов.
6. Репродукция герпесвирусов. Репликативный цикл герпесвирусов. Поксвирусы. Репродукция поксвирусов.
7. Репродукция вируса гепатита В. Репликативный цикл вируса гепатита В.
8. Генетика вирусов. Характеристика вирусных популяций. Генофонд вирусных популяций.
9. Мутации вирусов. Спонтанные мутации вирусов. Индуцированные мутации вирусов. Проявление мутаций вирусов в фенотипе.
10. Генетические взаимодействия между вирусами. Рекомбинации и перераспределение генов вирусами. Обмен фрагментами генома вирусами. Антигенный шифт.

-РНК-вирусы проникают в клетку путём слияния (парамиксовирусы) либо виропексиса (рабдо- и ортомиксовирусы). Для эффективной репродукции вирусная -РНК должна быть преобразована в +РНК - аналог клеточной мРНК (рис. 5-3).

Рис. 5-3. Репродуктивный цикл -РНК-содержащих вирусов . Проникновение вируса в клетку происходит после его адсорбции и слияния с клеточной оболочкой (1). После высвобождения вирусной -РНК происходит синтез +РНК на матрице -РНК, катализируемый РНК-зависимой РНК-пол имеразой, входящей в состав вириона (2), что приводит к образованию полных и коротких нитей. Короткие +РНК-нити участвуют в синтезе ферментов и белков для дочерних популяций (3). Среди последних особую значимость имеют белок М (4) и гликопротеины оболочки, встраивающиеся в клеточную стенку на этапах, предшествующих отпочковыванию. Полная цепь +РНК служит матрицей для синтеза молекул -РНК дочерних популяций (5). Вирионы дочерних популяций собираются на участках клеточной мембраны, модифицированных белком М (6), и высвобождаются почкованием, захватывая её фрагмент, служащий в дальнейшем суперкапсидом (7).

-РНК-вирусы. Репродукция -РНК-вирусов

Ранняя стадия репродукции . После высвобождения генома вирусная транскриптаза (РНК зависимая РНК-полимераза) запускает синтез +РНК. При этом «шаблоном» для вирусной транскриптазы служит вирусный рибонуклеопротеин (то есть РНК и внутренние белки) В результате образуются полные и короткие молекулы-копии +РНК.

Поздняя стадия репродукции . Полные плюс-нити служат матрицами для синтеза молекул -РНК, составляющих геномы дочерней популяции. Короткие плюс-нити участвуют в синтезе ферментов и белков. Вирусные белки (гемагглютинин и нейраминидаза) взаимодействуют участками клеточной мембраны. Там же сорбируются и вирусные М-белки (белки матрикса) Они проявляют выраженную гидрофобность за счёт содержания до 75% нейтральных аминокислот. Это свойство даёт им способность взаимодействовать с белками и липидами клеточные мембраны и быть посредником сборки вирусных частиц. С одной стороны, М-белок распознает участки включения гликопротеинов вируса в мембрану, с другой - его специфически распознает нуклеокапсид и связывается с ним. Сборка дочерних популяций завершается после присоединения нуклеокапсида к клеточной мембране. Их высвобождение происходит путём почкования через модифицированные участки мембраны. Отпочковывающиеся вирусные частицы захватывают её фрагменты, служащие в дальнейшем суперкапсидами.


Репродукция вирусов с двухнитевыми РНК

Двухнитевые РНК-вирусы представлены семейством Reoviridae (рео- и ротавирусы). Они не имеют суперкапсида и организованы по типу кубической симметрии. С вирусной РНК связана РНК-зависимая РНК-полимераза. Вирусы отличает удлинённый репродуктивный цикл и тенденция к накоплению продуктов вирусспецифического синтеза внутри клеток. После высвобождения генома в цитоплазме клеток РНК-полимераза осуществляет синтез молекул мРНК (+РНК на одной нити -РНК. В результате образуется до 11 функциональных молекул мРНК, соответствуюших по размерам 11 сегментам одной нити -РНК. Молекулы транслируются в 11 первичных полипептидных продуктов. Их последующее расщепление приводит к образованию в заражённых клетках до 16 вторичных полипептидов. Семь первичных и два вторичных полипептида входят в состав вирусных частиц, остальные первичные и вторичные полипептиды выполняют каталитические и регуляторные функции. Параллельно, синтезированная в ходе трансляции вирусная РНК-полимераза запускает синтез минус-нитей на матрице +РНК с последующим их соединением в двухнитевую молекулу РНК. Выход образовавшихся вирионов сопровождается гибелью клетки.