С Днем рождения, первый в мире калькулятор! Кто изобрел калькулятор. История его развития Год создания первого автоматического калькулятора

Сегодня повсеместное использование калькуляторов существенно облегчает работу человека в самых различных сферах. Впрочем, представить себе жизнь без таких помощников практически невозможно – ведь счетные устройства повсюду сопровождали человека в самые различные исторические периоды, хотя механизм их работы и был устроен иначе.

Уже три тысячи лет назад в Древнем Вавилоне появился первый абак – старинный аналог счет, в котором круглые камешки передвигались по специальным направляющим в форме углублений, и каждая из направляющих представляла собой отображение ряда единиц, десятков, сотен. Абак был известен также и в Древней Индии, а в X-ом веке нашей эры он также появился и в Западной Европе. Однако здесь вместо камешков было принято использовать специальные жетоны, на которые наносились цифры.

На Руси первым аналогом абака стали счеты – впервые они были построены в конце XV-го века и с тех пор их конструкция осталась практически неизменной, и по сей день они по-прежнему используются в различных областях торговли.

Абак и счеты представляют собой относительно простое приспособление для совершения математических действий. И всё же уже с самых древних времен люди стремились максимально упростить и ускорить проведение расчетов, а потому математиками изобретались всё новые и новые алгоритмы, а также – оригинальные устройства.

Например, найденный на древнем затонувшем судне близ греческого острова Антикитера механизм датируется приблизительно 100-150 гг. до н.э., однако это устройство уже поражает своими техническими возможностями. Бронзовые шестерни на деревянном корпусе, обрамленном красивым циферблатом со стрелками представляют собой древнейшее достижение ученых, которые при помощи Антикирейского механизма и подобных ему устройств осуществляли расчет движения небесных тел – ведь данное приспособление выполняло различные математические действия, в частности – сложение, вычитание, деление.

Следующее техническое достижение в области механизации расчетов датируется 1643-им годом и связано с именем ученого Блеза Паскаля. Новшество представляет собой суммирующую арифметическую машину, которая казалась совершенным достижением, но уже через тридцать лет Готфрид Вильгельм Лейбниц представил еще более сложное изобретение – первый механизированный калькулятор. Примечательно, что именно в эти годы (начало нового времени) несколько утихает борьба между «абацистами» и «алгоритмистами», и калькулятор представляет собой ожидаемый компромисс между двумя конфликтующими сторонами.

Активнейший всплеск в развитии калькуляторов происходит в XIX-XX-ом веках. В 1890-ые гг. в России активно используется арифмометр собственного производства, в уже в 50-ые годы последующего века налаживается массовое производство моделей с электрическим приводом – «Быстрица», «ВММ» и т.п. Карманные калькуляторы оказываются доступными нашим согражданам с 1974-го года, и первой такой моделью становится «Электроника Б3-04». В это же время в СССР появляются и первые программируемые калькуляторы, пиком развития которых становится модель «Электроника МК-85», работающая на языке программирования Basic.

За рубежом развитие счетных машин происходит не менее интенсивно. Первый калькулятор массового выпуска – ANITA MK VIII – выпускается в Англии в 1961-ом году и представляет собой устройство, работающее на газоразрядных лампах. Это устройство было достаточно громоздким по современным меркам, оно оснащалось клавиатурой для ввода числа, а также дополнительной 10-ти клавишной консолью для задания множителя. В 1965-ом году калькуляторы Wang впервые научились считать логарифмы, а уже через четыре года в США появился и первый настольный программируемый калькулятор. А в 1970-ые годы мир калькуляторов становится более совершенным и разнообразным – появляются новые настольные и карманные машины, а также профессиональные инженерные калькуляторы, позволяющие производить сложнейшие расчеты.

Сегодня усовершенствованные модели калькуляторов представляют собою высокотехнологичные разработки, при создании которых был использован колоссальный опыт инженерных предприятий во всем мире. И, несмотря на абсолютный приоритет ЭВМ, калькуляторы и прочие счетные устройства по-прежнему сопровождают человека в различных отраслях деятельности!

Точное время изобретения компьютеров определить очень трудно. Их предшественники — механические вычислительные машины, например счеты, были придуманы человеком задолго до нашей эры. Однако сам термин «компьютер» намного моложе и появился только в XX веке.

Наряду с машинами с перфокартами IBM 601 (1935) важную роль в истории развития компьютерной техники сыграли первые изобретения немецкого ученого Конрада Цузе. На сегодняшний день многие считают, что есть несколько первых компьютеров, изобретенных примерно в одно время.

1936: Конрад Цузе (Konrad Zuse) и Z1

В 1936 году Конрад Цузе начал разрабатывать первый программируемый калькулятор, работа над которым была завершена в 1938 году. Z1 был первым компьютером с двоичным кодом и работал с перфолентой. Но к сожалению, механические части калькулятора были очень ненадежны. Реплика Z1 находится в Музее технологий в Берлине.

1941: Конрад Цузе и Z3

Z3 — это преемник Z1 и первый свободно программируемый компьютер, который можно было использовать в разных областях, а не только для вычислений. Многие историки считают, что Z3 - первый в мире функционирующий универсальный компьютер.

1946: системы обработки данных первого поколения


ENIAC

В 1946 году исследователи Экерт и Мочли изобрели первый полностью электронный компьютер ENIAC - Electronic Numerical Integrator and Computer (электронный цифровой интегратор и компьютер). Он использовался армией США для расчета баллистических таблиц. ENIAC владел основными математическими операциями и мог вычислять квадратные корни.

1956-1980 годы: системы обработки данных 2-5 поколений


В эти годы были разработаны языки программирования более высокого уровня, а также принципы работы виртуальной памяти, появились первые совместимые компьютеры, базы данных и многопроцессорные системы. Первый в мире свободно программируемый настольный компьютер был создан компанией Olivetti. В 1965 году стала доступна для покупки электронная машина Programma 101 стоимостью 3200 долларов.

1970-1974: Компьютерная революция

Микропроцессоры стали дешевле, и в течение этого периода времени на рынок было выпущено достаточно много компьютерной техники. Ведущую роль здесь сыграли, прежде всего, компании Intel и Fairchild. В эти годы Intel создал, первый микрокомпьютер: 15 ноября 1971 года был представлен 4-битный процессор Intel 4004. В 1973 году вышел Xerox Alto - первый компьютер с графическим пользовательским интерфейсом (монитором), мышью и встроенной картой Ethernet.

1976-1979 годы: микрокомпьютеры

Микрокомпьютеры стали популярны, появились новые операционные системы, а также флоппи-дисководы. Компания Microsoft зарекомендовала себя на рынке. Появились первые компьютерные игры и стандартные названия программ. В 1978 году на рынок вышел первый 32-разрядный компьютер от DEC.


IBM разработала IBM 5100 - первый «портативный» весом 25 килограмм. Он имел 16 килобайт оперативной памяти, дисплей 16х64 и стоил более 9 000 долларов. Именно такая высокая цена не позволила компьютеру утвердиться на рынке.

1980-1984: первый «настоящий» ПК


В 80-е годы наступило время «домашних компьютеров», таких как Commodore VC20, Atari XL или компьютеров компании Amiga. IBM оказала большое влияние на будущие поколения ПК, представив в 1981 году IBM PC. Обозначенный IBM класс оборудования действителен и сегодня: процессоры x86 основаны на последующих разработках оригинального дизайна IBM.

В конце 1970-х годов существовало множество технических устройств и производителей, но IBM стала доминирующим поставщиком компьютерной техники. В 1980 году компания выпустила первый «настоящий» компьютер - он задал направление развития компьютерных технологий по настоящее время. В 1982 году IBM также вывела на рынок Word, NetWare и другие знакомые нам и по сей день приложения.

В 1983 появился первый Apple Macintosh, сделав ставку на удобство пользователя. В 1984 начали серийный выпуск ПК в СССР. Первый отечественный компьютер, ставший на поток, назывался «АГАТ».

1985/1986: дальнейшее развитие компьютерных технологий


В 1985 году вышел 520ST. Это был чрезвычайно мощный для того времени компьютер Atari. В эти же годы был выпущен первый миникомпьютер MicroVAX II. В 1986 году IBM вывела на рынок новую операционную систему (OS/2).

1990: Появление Windows

22 мая 1990 года появилась Windows 3.0, что стало большим прорывом для Microsoft в те годы. Только за первые шесть месяцев было продано около трех миллионов копий операционной системы. начал рассматривался как глобальный способ коммуникации.

1991-1995: Windows и Linux

В результате прогресса изначально очень дорогие компьютеры стали более доступными. Приложения Word, Excel и PowerPoint наконец объединили в пакет Office. В 1991 году финский разработчик Линус Торвальдс начал работу над Linux.

Во многих компаниях Ethernet стал стандартом передачи данных. Благодаря возможности подключения компьютеров друг к другу, становилась все популярнее модель клиент-сервер, позволявшая работать в сети.

1996-2000: Интернет приобретает все большее значение

В эти годы ученый-программист Тим Бернерс Ли разработал язык разметки HTML, протокол передачи HTTP и URL-адрес — унифицированный указатель ресурсов, чтобы дать каждому сайту имя и передать контент с веб-сервера в браузер. Начиная с 1995 года было доступно множество веб-редакторов, что позволило многим людям создавать свои собственные сайты.

XXI век: дальнейшее развитие


В 2003 году Apple выпустила PowerMac G5. Это был первый компьютер с 64-битным процессором. В 2005 году Intel создала первые двухъядерные процессоры.

В последующие годы основной курс развития стал направлен на разработку многоядерных процессоров, расчеты на графических чипах и также планшетных компьютерах. С 2005 года начали учитывать экологические аспекты при дальнейшей разработке компьютерной техники.

Новейшие технологии: квантовый компьютер

Сегодня ученые работают над квантовыми компьютерами. Эти машины основаны на кубитах. Как именно работают квантовые компьютеры, мы рассказывали в нашем журнале и в .

40 лет назад, электронная революция калькуляторов значительно расширила сферу использования калькуляторов: CASIO Mini стал первым калькулятором доступным для всех. С ценой в € 81,81, устройство было многим по карману. До этого момента зачастую калькуляторы стоили около € 511,29, весили несколько килограмм и использовались только учеными и бухгалтерами. Спустя всего десять месяцев объем поставок CASIO Mini достиг одного миллиона изделий. Сегодня калькуляторы CASIO стали частью повседневной жизни во многих странах по всему миру.


Всемирно известная компания Casio начала историю своего развития в 1946 году, когда Касио Тадао, ныне покойный основатель этой корпорации, открыл в Токио своё небольшое дело, назвав фирму Kashio Seisakujo. Поначалу эта фирма занималась мелким субподрядом для фабрики по производству деталей и приспособлений для микроскопов. Вскоре Тадао привлёк к семейному бизнесу трёх своих младших братьев: Юкио, Кадзуо и Тосио. Все братья от природы имели инженерные и изобретательские таланты, а потому сразу почувствовали технический и коммерческий потенциал электрического калькулятора, один из иностранных образцов которого они увидели в 1949 году на выставке в Токио.

Япония в то время отставала в технологическом развитии от западных стран, а потому пока не могла производить электрические калькуляторы. Тосио решил разработать усовершенствованную модель электрического калькулятора, заменив шумные шестеренки и электромотор, которые обычно устанавливались в устройства такого типа, на полностью электрическую схему. В 1956 году братьями Касио был создан уникальный релейный калькулятор Casio. Его новые электрические реле были устойчивы к попаданию грязи и пыли, он имел 10 кнопок (от 0 до 9) и один дисплей, который последовательно отображал вводимые числа при операциях над ними, а в конце высвечивал только ответ. Это была революция в мире счетных машин, которая легла в основу пути к компактности калькуляторов и удобства их использования на работе и в повседневной жизни, ведь в то время подобные устройства занимали целые комнаты. В итоге после семи лет напряжённых разработок нового калькулятора была основана компания Casio Computer, которая разрабатывала и изготавливала релейные калькуляторы. В июне 1957 года в продажу поступил первый в мире компактный полностью электронный калькулятор Casio 14-A, который весил 140 кг. Компания Casio сразу стала лидером рынка, извлекая высокую прибыль от продаж релейных калькуляторов корпорациям и научным институтам.

Технологический прогресс шёл вперёд, и в 60-е годы на Западе появились электронные калькуляторы, работающие на транзисторах. Преимущества электронных калькуляторов перед релейными были в их бесшумности, лучшем быстродействии и небольших размерах, позволявших размещать их на столе. Чтобы не отстать от конкурентов, Casio приступила к разработкам и в итоге в 1965 году выпустила свой настольный электронный калькулятор Casio 001 со встроенной памятью, которой не было у калькуляторов других производителей.
Спрос на калькуляторы быстро увеличивался, и с середины 60-х годов началась жёсткая конкуренция в сфере разработок и маркетинга на рынке калькуляторов. Этот период до середины 70-х годов XX века был назван «войной калькуляторов».

Casio продолжила путь инноваций, и в 1973 году был выпущен первый в мире персональный калькулятор Casio Mini, который имел размер с ладонь и невысокую цену, что обеспечило ему огромную популярность. Благодаря своим разработкам Casio завоевала лидирующее положение на рынке. Ее массовое производство калькуляторов дало мощный импульс зарождавшейся полупроводниковой индустрии Японии и в итоге положило начало мощному росту японской электронной промышленности.

Постепенно калькуляторы стали использоваться в школах. Вначале учителя и родители скептически относились к использованию калькуляторов в школе, опасаясь, что ученики могут забыть, как считать в уме и на листке бумаги. Сегодня же эти опасения совсем не возникают. Школьные калькуляторы зарекомендовали себя как эффективный инструмент обучения математике. Все больше и больше учеников используют графические калькуляторы наряду с карманными и настольными. Преимущества очевидны: ученики легко усваивают абстрактные математические понятия при наглядном восприятии на экране калькулятора и работают более эффективно на практических занятиях. Графический калькулятор осуществляет тяжелые рутинные вычисления, освобождая больше времени для индивидуальных занятий и открытий.

После такого успеха, руководство Casio решило осваивать новый для себя бизнес - выпуск часов. В 70-х годах часовая индустрия переживала технологическую революцию, благодаря разработке кварцевого механизма. Устройство кварцевых часов имело много общего с электронным калькулятором Casio, и уже в 1974 году были выпущены наручные электронные часы Casiotron. Часы имели ЖК цифровой дисплей, показывали часы, минуты, секунды, а также автоматически определяли число дней в месяце и високосные годы. Такой встроенный автоматический календарь был уникален для того времени.

Компания Casio продолжила открывать для себя новые направления и внедряла в производство новаторские разработки почти во всех областях электронной промышленности, выпуская разнообразную бытовую электронику: калькуляторы, часы, принтеры, электронные музыкальные инструменты, цифровые фото- и видеокамеры, электронные органайзеры, карманные телевизоры, пейджеры и мобильные телефоны, компьютеры и КПК и многое другое.

История развития такого вычислительного механизма как калькулятор начинается еще в ХVII веке, а первые прообразы этого аппарата существовали в VI столетии до нашей эры. Само слово «калькулятор» происходит от латинского «calculo», что в переводе означает «считаю», «подсчитываю». Но более детальное изучение этимологии этого понятия показывает, что изначально следует говорить о слове «calculus», которое переводится как «камешек». Ведь изначально именно камешки использовались как атрибут для счета.

Калькулятор – один из самых простых и часто используемых механизмов в повседневной жизни, однако это изобретение имеет большую историю и ценный опыт для развития науки.

Антикитерский механизм

Первым прообразом калькулятора считается Антикитерский механизм , который был обнаружен в начале ХХ века возле острова Антикитер на затонувшем корабле, принадлежавшему Италии. Ученые считают, что механизм можно датировать вторым веком до нашей эры.

Устройство предназначалось для того, чтобы высчитывать движение планет, спутников. Также Антикитерский механизм мог складывать, вычитать и делить.

Абак

В то время как торговые отношения между Азией и Европой начинали налаживаться, потребность в разных счетных операциях становилась все больше и больше. Именно поэтому в VI веке был изобретен первый прообраз счетной машины – Абак .

Абак – это небольшая деревянная доска, на которой были сделаны специальные бороздки. В этих небольших углублениях чаще всего лежали камешки или жетоны, обозначающие числа.

Механизм работал по принципу вавилонского счета, в основе которого лежала шестидесятеричная система. Любой разряд числа состоял из 60 единиц и, исходя из того, где располагалось число, каждая бороздка соответствовала количеству единиц, десятков и т.д. Из-за того, что в каждом углублении держать по 60 камешков было достаточно неудобно, то углубления были разделены на 2 части: в одной – камешки, обозначавшие десятки (не больше 5), во второй – камешки, обозначавшие единицы (не больше 9). При этом, в первом отделении камешки соответствовали единицам, во втором отделении – десяткам и т.д. Если в одной из бороздок число, необходимое при операции, превышало цифру 59, то один из камешков перекладывался в соседний ряд.

Абак был популярен вплоть до ХVIII и имел множество модификаций.

Счетная машина Леонардо да Винчи

В дневниках Леонардо да Винчи можно было увидеть чертежи первой счетной машины , которые получили название - «Мадридский кодекс».

Аппарат представлял собой несколько стержней с колесиками разного размера. Каждое колесо по своему основанию имело зубцы, благодаря которым механизм мог работать. Десять вращений первой оси приводили к одному вращению второй, а десять вращений второй оси к одному полному обороту третьей.

Скорей всего, при жизни Леонардо так и не смог перенести свои идеи в материальный мир, поэтому приянто считать, что во второй половине 19 века появилась первая модель счетной машины,созданная доктором Роберто Гуателли.

Палочки Непера

Шотландский исследователь Джон Непер в одной из своих книг, вышедшей в 1617 году изложил принцип умножения с помощью деревянных палочек. Вскоре подобный метод стал называться палочками Непера . В основе этого механизма лежал популярный в то время метод умножения решеткой.

«Палочки Непера» - это комплект деревянных палочек, на большинстве которых была нанесена таблица умножений, а также одна палочка с разметкой цифр от одного до девяти.

Для того, чтобы произвести операцию умножения, нужно было выложить палочки, которые бы соответствовали значению разряда множимого, а верхний ряд каждой дощечки должен был образовать множимое. В каждой строке числа суммировались, и потом результат после операции складывался.

Вычисляющие часы Шиккарда

Прошло больше, чем 150 лет после того, как Леонардо да Винчи изобрел свою счетную машину, когда немецкий профессор Вильгельм Шиккард в одном из своих писем Иоганну Кеплеру в 1623 году написал о своем изобретении. По словам Шиккарда, аппарат мог производить операции сложения и вычитания, а также умножения и деления.

Это изобретение вошло в историю как один из прототипов калькулятора, а название «механических часов» оно получило из-за принципа работы механизма, который основывался на применении звездочек и шестеренок.

Вычисляющие часы Шиккарда – это первое механическое устройство, которое могло совершать 4 арифметические операции.

Два экземпляра устройства сгорели во время пожара, а чертежи их создателя были найдены лишь в 1935 году.

Счетная машина Блеза Паскаля

В 1642 году Блез Паскаль начал заниматься разработкой новой счетной машины, будучи в возрасте 19 лет. Отец Паскаля, занимаясь сбором налогов, был вынужден иметь дело с постоянными расчетами, поэтому его сын и решил создать аппарат, который смог бы облегчить подобную работу.

Счетная Машина Блеза Паскаля – это небольшой ящик, в котором находится множество связанных между собой шестеренок. Цифры, необходимые для произведения любой из четырех арифметических операций, вводились с помощью оборотов колесиков, которые соответствовали десятичному разряду числа.

В течение 10 лет Паскаль смог сконструировать около 50 экземпляров машин, 10 из которых продал.

Арифмометр Кальмара

В первой половине 19го века Томас де Кальмар создал первое коммерческое устройство, которое могло выполнять четыре арифметические операции. Арифмометр был создан на основе механизма предшественника Кальмара – Вильгельма Лейбница. Сумев усовершенствовать уже существующий аппарат, Кальмар назвал свое изобретение «арифмометром».

Арифмометр Кальмара – это небольшой железный или деревянный механизм, внутри которого находится автоматизированный счетчик, с помощью которого можно выполнять четыре арифметические операции. Это было устройство, которое превосходило ряд уже существующих моделей, так как оно могло работать с тридцатизначными числами.

Арифмометры 19-20 века

После того, как человечество поняло, что вычислительная техника заметно упрощает работу с цифрами, в 19-20 веках появилось множество изобретений, связанных со счетными механизмами. Наиболее популярным устройством в этот период считался арифмометр.

Арифмометр Кальмара: изобретен в 1820 году, первый коммерческий механизм, выполняющий 4 арифметические операции.

Арифмометр Чернышева: первый арифмометр, появившийся в России, изобретен в 50-х годах 19 столетия.

Арифмометр Однера – один из самых популярных арифмометров ХХ века, появился в 1877 году.

Арифмометр Mercedes-Euklid VI: первый арифмометр, способный выполнять четыре арифметические операции без помощи человека, изобретен в 1919 году.

Калькуляторы в ХХІ веке

В наше время калькуляторы играют значимую роль во всех сферах жизни: начиная профессиональной, заканчивая бытовой. Эти вычислительные приборы заменили человечеству абаки и счеты, пользующиеся популярностью в свое время.

Исходя из целевой аудитории и характеристик, калькуляторы делятся на простые, инженерные, бухгалтерские и финансовые. Также существуют программируемые калькуляторы, которые можно вынести в отдельный класс. Они могут работать со сложными программами, предварительно заложенными в сам механизм. Для работы с графиками можно воспользоваться графическим калькулятором.

Также, классифицируя калькуляторы по исполнению, выделяют компактный и настольный виды.

История счетной техники – это процесс приобретения опыта и знаний человечеством, в результате чего счетные механизмы смогли гармонично вписаться в жизнь человека.

22/09/98)

Эта статья посвящена незаменимым помощникам в нашей жизни - микрокалькуляторам. Описывается история возникновения советских микрокалькуляторов, их особенности и интересные возможности отдельных моделей.

ПЕРВЫЕ ВЫЧИСЛИТЕЛИ

Первым механическим приспособлением в России для автоматизации расчетов были счеты. Этот "народный калькулятор" продержался на рабочих местах кассирш в магазинах вплоть до середины девяностых годов. Интересно отметить, что в учебнике "Торговые вычисления" 1986 года методам вычисления на счетах посвящена целая глава.

Одновременно со счетами, в научных кругах, еще с дореволюционных времен, с успехом использовались логарифмические линейки, которые с XVII века практически без изменений прослужили "верой и правдой" вплоть до появления калькуляторов.

Пытаясь как-то автоматизировать процесс вычислений, человечество начинает изобретать механические считающие устройства. Даже известный математик Чебышев в конце XIX века предложил свою модель вычислителя. К сожалению, изображения не сохранилось.

Самым популярным механическим вычислителем в советские времена являлся арифмометр системы Однера "Феликс". Слева - изображение арифмометра, взятое из "Малой советской энциклопедии" 1932 года издания.
На этом арифмометре можно было производить четыре арифметических действия - сложение, вычитание, умножение и деление. В более поздних моделях, например, "Феликс-М", можно видеть ползуночки для указания положения запятой и рычажок для сдвига каретки. Для производства вычислений было необходимо крутить ручку - один раз для сложения или вычитания, и несколько раз для умножения и деления.

Один раз, конечно, покрутить ручку можно, и даже интересно, но что делать, если вы работаете бухгалтером, и за день необходимо произвести сотни простых операций? Да и шум от крутящихся шестеренок-счетчиков стоит приличный, особенно, если одновременно в помещении с арифмометрами работает несколько человек.
Однако, со временем крутить ручку начинало надоедать, и человеческий ум изоблел электрические счетные машины, которые арифметические действия производили автоматически или полуавтоматически. Справа - изображение полулярной в 50-е годы многоклавишной вычислительной машины ВММ-2 (Товарный словарь, VIII том, 1960). Эта модель имела девять разрядов и работала до 17-го порядка. У нее были габариты 440x330x240 мм и масса в 23 килограмма.

Все же наука взяла свое. В послевоенные годы начала бурно развиваться электроника и появились первые компьютеры - электронные-вычислительные машины (ЭВМ). К началу 60-х годов между компьютерами и самыми мощными счетно-клавишными вычислительными машинами образовался по многим параметрам огромный разрыв, несмотря на появление советских релейных вычислительных машин "Вильнюс" и "Вятка" (1961).
Но к тому времени в ленинградском университете уже была спроектирована одна из первых в мире настольных клавишных вычислительных машин, в которой использовались малогабаритные полупроводниковые элементы и ферритовые сердечники. Был изготовлен и действующий макет этой ЭКВМ - электронной клавишной вычислительной машины.
А вообще, считается, что первый массовый электронный калькулятор появился в Англии в 1963 году. Его схема была выполнена на печатных платах и содержала несколько тысяч одних только транзисторов. Размеры такого калькулятора были как у пишущей машинки, а выполнял он лишь арифметические операции с многоразрядными числами. Слева показан калькулятор "Электроника" - типичный представитель калькуляторов этого поколения.

Распространение настольных ЭКВМ началось в 1964 г., когда в нашей стране был освоен серийный выпуск ЭКВМ "Вега" и начат выпуск настольных ЭКВМ в ряде других стран. В 1967 г. появилась ЭДВМ-11 (электронная десятиклавишная вычислительная машина) - первая в нашей стране ЭКВМ, автоматически вычислявшая тригонометрические функции.

Дальнейшее развитие вычислительной техники неразрывно связано с достижениями микроэлектроники. В конце 50-х годов была разработана технология производства интегральных схем, содержавших группы связанных между собой электронных элементов, а уже в 1961 г. появилась первая модель ЭВМ на интегральных схемах, которая была в 48 раз меньше по массе и в 150 раз меньше по объему, чем полупроводниковые ЭВМ, выполнявшие те же функции. В 1965 г. появляются и первые ЭКВМ на интегральных схемах. Примерно в это же время появились и первые переносные ЭКВМ на БИСах (только что внедренных в производство) с автономным питанием от встроенных аккумуляторов. В 1971 г. габариты ЭКВМ стали "карманными", в 1972 г. появились ЭМК научно-технического типа с подпрограммами вычисления элементарных функций, дополнительными регистрами памяти и с представлением чисел как в естественной форме, так и в форме с плавающей запятой в самом широком диапазоне чисел.
Развитие производства ЭКВМ в нашей стране шло параллельно с его развитием в других наиболее промышленно развитых странах мира. В 1970 г. появились первые образцы ЭКВМ на ИС, с 1971 г. на этих элементах начинается выпуск машин серии "Искра". В 1972 г. стали производиться и первые отечественные микро-ЭВМ на БИСах.

ПЕРВЫЙ СОВЕТСКИЙ КАРМАННЫЙ КАЛЬКУЛЯТОР

Первые советские настольные калькуляторы, которые появились в 1971 году, быстро завоевали популярность. ЭКВМ на основе БИС работали тихо, потребляли мало энергии, вычисляли быстро и безошибочно. Себестоимость микросхем быстро снижалась, и можно было думать о создании МК карманного размера, цена которого была бы доступна широкому потребителю.
В августе 1973 года электронная промышленность нашей страны поставила задачу за один год создать электронный карманный вычислитель на микропроцессорной БИС и с жидкокристаллическим индикатором. Над этой сложнейшей задачей работала группа из 27 человек. Предстояла огромная работа: изготовить чертежи, схемы и. шаблоны, состоящие из 144 тыс. точек, разместить микропроцессор с 3400 элементами в кристалле размером 5х5 мм.
Через пять месяцев работы были готовы первые образцы МК, а через девять месяцев, за три месяца до установленного срока, электронный карманный вычислитель под названием "Электроника Б3-04" был сдан государственной комиссии. Уже в начале 1974 года электронный гном поступил в продажу. Это была большая трудовая победа, показавшая возможности нашей электронной промышленности.

В этом микрокалькуляторе впервые был применен индикатор на жидких кристаллах, причем цифры изображались белыми знаками на черном фоне (см. рис.).
Включение калькулятора производилось нажатием на шторку, после чего открывалась крышка, и калькулятор начинал работу.
Микрокалькулятор имел очень интересный алгоритм работы. Для того, чтобы вычислить (20-8+7) необходимо было нажать клавиши | C | 20 | += | 8 | -= | 7 | += |. Результат: 5. Если результат надо умножить, скажем, на три, то вычисления можно продолжить нажатием клавиш: | X | 3 | += |.
Клавиша | K | использовалась для вычисления с константой.

В этом калькуляторе были использованы прозрачные платы с объемным монтажом. На рисунке показана часть платы микрокалькулятора.

Микрокалькулятор содержит четыре микросхемы - 23-х разрядный сдвиговый регистр К145АП1, устройство управления индикатором К145ПП1, операционный регистр К145ИП2 и микропроцессор К145ИП1. В блоке преобразования напряжения использована микросхема преобразования уровней.
Интересно отметить, что этот калькулятор работал от одной батарейки типа АА (А316 "Квант", "Уран").

ПЕРВЫЕ СОВЕТСКИЕ МИКРОКАЛЬКУЛЯТОРЫ

В начале 70-х годов привычный сегодня язык работы с микрокалькуляторами только зарождался. Первые модели микрокалькуляторов вообще могли иметь свой язык работы, и на калькуляторе приходилось учиться считать. Возьмем, к примеру, первый калькулятор ленинградского завода "Светлана" серии "С". Это - калькулятор С3-07. Кстати, стоит отметить, что калькуляторы завода "Светлана" вообще стоят особняком.

Небольшое отступление. Все микрокалькуляторы в те времена получили общее обозначение "Б3" (цифра три на конце, а не буква "З", как многие считали). Настольные электронные часы получили буквы Б2, наручные электронные - Б5 (например, Б5-207), настольные электронные с вакуумным индикатором - Б6, большие настенные - Б7 и так далее. Буква "Б" - "бытовая техника". Только микрокалькуляторы Светлановского завода получили букву "С" - Светлана (СВЕТ ЛАмпочки НАкаливания - для тех, кто не знает).

Так вот, возьмем, к примеру, калькулятор С3-07. Очень удивительный калькулятор, особенно - его клавиатура и дисплей. Как видно из картинки, на калькуляторе совмещены не только клавиши | += | и | -= |, но и умножить/разделить | X -:- |. Попробуйте сами догадаться, как на этом калькуляторе умножать и делить. Подсказка: калькулятор не воспринимает два нажатия на одну клавишу, возможно только одно.
Ответ не менее удивителен: чтобы произвести, скажем, умножение 2 на 3, надо нажать на клавиши | 2 | X-:- | 3 | += |, а чтобы разделить 2 на 3, надо нажать клавиши: | 2 | X-:- | 3 | -= |. Сложение и вычитание происходит аналогично калькулятору Б3-04, то есть, получение разности 2 - 3 будет вычисляться так: | 2 | += | 3 | -= |. В некоторых моделях этого калькулятора можно встретить и удивительный восьмисегментный индикатор.

Начиная с этой модели калькуляторов, все простые калькуляторы Светлановского завода оперируют с числами с порядками до 10e16-1, даже если на дисплей помещается восемь или двенадцать разрядов. Если результат превышает 8 или 12 разрядов (в зависимости от модели), то запятая исчезает и на дисплее появляются первые 8 или 12 разрядов числа.

Говоря о языке работы с микрокалькуляторами первых выпусков, следует упомянуть и о калькуляторах Б3-02, Б3-05 и Б3-05М. Это - вехи старых калькуляторов типа "Искра". В этих калькуляторах при вычислениях постоянно горят все разряды индикатора. В основном, конечно, нули. Очень неудобно отыскивать на таких калькуляторах первый (да и последний) значимый разряд. Кстати, в модели C3-07, о которой говорилось ранее, уже была попытка решить эту проблему, хотя и несколько необычным способом - на этом калькуляторе ноль имеет половину высоты. Так вот, эти три калькулятора имели очень неудобную, но вполне объяснимую для ранних калькуляторов особенность: требуемая точность вычислений задается при вводе первого числа. То есть, если необходимо, скажем, вычислить частное от деления 23 на 32 с точностью до трех знаков после запятой, то число 23 необходимо ввести с тремя знаками после запятой: | 23,000 | -:- | 32 | = | (0.718). До тех пор, пока оператор не нажмет кнопку сброса, все последующие вычисления будут производиться с тремя знаками после запятой, а запятая вообще больше никуда не движется. Это, кстати, и называется "фиксированной запятой", а более поздние калькуляторы, в которых запятая уже перемещается по дипслею, тогда назывались "с плавающей запятой". Сейчас, в терминологии произошли изменения, в результате которых с "плавающей запятой" сейчас называются отображения числа с мантиссой слева и порядком справа.

Через год после разработки первого карманного микрокалькулятора Б3-04 появились новые, более совершенные модели карманных МК. Это - модели Б3-09М, Б3-14 и Б3-14М. Эти калькуляторы были сделаны на одной микросхеме процессора К145ИК2 и одной микросхеме генератора фаз. Слева показан калькулятор Б3-09М, в таком же корпусе сделан и Б3-14М, справа - Б3-14. На этих моделях был уже "стандартный" язык работы на калькуляторах, включая вычисления с константой.
Эти калькуляторы уже могли работать как от блока питания, так и от четырех (Б3-09М, Б3-14М) или трех (Б3-14) элементов типа АА.
Хотя эти калькуляторы сделаны на одном и том же чипе, они имеют разные функциональные возможности. И вообще, "убирание" разных функций было присуще многим моделям советских микрокалькуляторов. Например, у микрокалькулятора Б3-09М не было знака вычисления квадратного корня, Б3-14М не умел вычислять проценты.
Особенностью этих простых калькуляторов являлось то, что запятая занимала отдельный разряд. Это очень удобно для беглого считывания информации, но при этом пропадает последний знаковый разряд. У этих же калькуляторов перед началом работы необходимо нажимать клавишу "C" для очистки регистров.

ПЕРВЫЙ СОВЕТСКИЙ ИНЖЕНЕРНЫЙ МИКРОКАЛЬКУЛЯТОР

Следующим огромным шагом в истории развития микрокалькуляторов стало появление первого советского инженерного микрокалькулятора. В конце 1975 года в Советском Союзе был создан первый инженерный микрокалькулятор Б3-18. Как писал по этому поводу журнал "Наука и Жизнь" 10, 1976 в статье "Фантастическая электроника": "...этот калькулятор перешел Рубикон арифметики, его математическое образование шагнуло в тригонометрию и алгебру. "Электроника Б3-18" умеет мгновенно возводить в квадрат и извлекать квадратный корень, в два приема возводить в любую степень в пределах восьми разрядов, вычислять обратные величины, вычислять логарифмы и антилогарифмы, тригонометрические функции...", "...когда видишь, как машина, которая только что мгновенно складывала огромные числа, тратит несколько секунд, чтобы выполнить какую-либо алгебраическую или тригонометрическую операцию, невольно задумываешься о той большой работе, которая идет внутри маленькой коробочки, прежде чем на ее индикаторе засветится результат".
И действительно, была проделана огромная работа. В единый кристалл размером 5 х 5,2 мм удалось вместить 45000 транзисторов, резисторов, конденсаторов и проводников, то есть полсотни телевизоров того времени запихали в одну клеточку арифметической тетради! Однако, и цена такого калькулятора была немалой - 220 рублей в 1978 году. Для примера, инженер после окончания института в те времена получал 120 рублей в месяц. Но, покупка стоила того. Теперь не надо думать, как не сбить ползунок логарифмической линейки, не надо заботиться о погрешности, можно забросить на полку таблицы логарифмов.
Кстати, в этом калькуляторе впервые была применена клавиша префиксной функции "F".
Все же в микросхему К145ИП7 калькулятора Б3-18 не удалось полностью вместить все, что хотелось. Например, при вычислении функций, в которых использовалось разложение в ряд Тэйлора, очищался рабочий регистр, в результате чего стирался предыдущий результат операции. В связи с этим нельзя было производить цепочные вычисления, такие как 5 + sin 2. Для этого сначала нужно было получить синус от двух, а потом только прибавить к результату 5.

Итак, работа проделана большая, потрачены большие усилия, и в результате появился хороший, но очень дорогой калькулятор. Чтобы калькулятор был доступен массовым слоям населения, было принято решение на базе калькулятора Б3-18А сделать более дешевую модель. Чтобы не изобретать велосипед, наши инженеры пошли по самому легкому пути. Они взяли и убрали клавишу префиксной функции "F" с калькулятора. Калькулятор превратился в обычный, получил название "Б3-25А" и стал доступным широким слоям населения. И только разработчики и ремонтники калькуляторов знали тайну переделки Б3-25А.

ДАЛЬНЕЙШЕЕ РАЗВИТИЕ МИКРОКАЛЬКУЛЯТОРОВ

Сразу вслед за калькулятором Б3-18 совместно с инженерами из ГДР был выпущен микрокалькулятор Б3-19М. В этом калькуляторе была использована, так называемая, "обратная польская запись". Сначала набирается первое число, затем нажимается клавиша ввода числа в стек , затем второе число, и только после этого - требуемая операция. Стек в калькуляторе состоит из трех регистров - X, Y и Z. В этом же калькуляторе впервые был применен ввод порядка числа и показ числа в формате с плавающей запятой (с мантиссой и порядком). В калькуляторе был использован 12-разрядный индикатор на красных светоизлучающих диодах.

В 1977 году появился другой очень мощный инженерный калькулятор - С3-15. Этот калькулятор имел повышенную точность вычислений (до 12 разрядов), работал с порядками до 9,(9) в 99 степени, имел три регистра памяти, но самое замечательное - работал с алгебраической логикой. То есть, для того, чтобы вычислить по формуле 2 + 3 * 5, не нужно было сначала вычислять 3 * 5, а затем к результату прибавлять 2. Эту формулу можно было записывать в "естественном" виде: | 2 | + | 3 | * | 5 | = |. Кроме того, в калькуляторе использовались скобки до восьми уровней. Еще этот калькулятор - единственный калькулятор, который вместе со своим настольным братом МК-41, имеет клавишу /p/. Эта клавиша использовалась для вычислений по формуле sqrt (x^2 + y^2).

В 1977 году была разработана микросхема К145ИП11, которая породила целую серию калькуляторов. Самым первым из них был очень известный калькулятор Б3-26 (на рисунке справа). Как и с калькуляторами Б3-09М, Б3-14 и Б3-14М, а также с Б3-18А и Б3-25А, с ним поступили также - удалили некоторые функции.

На основе калькулятора Б3-26 были сделаны калькуляторы Б3-23 с процентами, Б3-23А с квадратным корнем, Б3-24Г с памятью. Кстати, калькулятор Б3-23А впоследствии стал самым дешевым советским калькулятором с ценой всего в 18 рублей. Б3-26 вскоре стал называться МК-26 и появился его сводный брат МК-57 и МК-57А с аналогичными функциями.

Светлановский завод также порадовал своей моделью С3-27, которая, правда, не прижилась, и ее вскоре заменила очень популярная и дешевая модель С3-33 (МК-33).

Еще одним направлением в развитии микрокалькуляторов стали инженерные Б3-35 (МК-35) и Б3-36 (МК-36). Б3-35 отличался от Б3-36 более простым дизайном и стоил на пять рублей дешевле. Эти микрокалькуляторы умели переводить градусы в радианы и наоборот, умножать и делить числа в памяти.
Очень интересно эти калькуляторы вычисляли факториал - простым перебором. На вычисление максимального значения факториала в 69 на микрокалькуляторе Б3-35 уходило более пяти секунд.
Эти калькуляторы были очень популярны у нас, хотя и обладали, на мой взгляд, некоторым недостатком: они показывали на индикаторе ровно столько значащих разрядов, сколько об этом сказано в инструкции. Обычно их пять-шесть для трансцендентных функций.

На основе этих калькуляторов был сделан настольный вариант МК-45.

Кстати, многие карманные инженерные калькуляторы имеют своих настольных братьев. Это - калькуляторы МК-41 (С3-15), МКШ-2 (Б3-30), МК-45 (Б3-35, Б3-36).

Калькулятор МКШ-2 - единственный "школьный" калькулятор выпускавшийся нашей промышленностью за исключением больших демонстрационных, о которых будет сказано ниже. Этот калькулятор, как и калькулятор Б3-32 (на рисунке слева), умел вычислять корни квадратного уравнения и находить корни системы уравнений с двумя неизвестными. По дизайну этот калькулятор полностью идентичен калькулятору Б3-14.
Особенность калькулятора, кроме описанных выше, - все надписи на клавишах выполнены по иностранным стандартам. Например, клавиша записи числа в память обозначалась не "П" и не "x->П", а "STO". Вызов числа из памяти - "RCL".
Несмотря на возможность работы с числами с большими порядками, на этом калькуляторе использовался восьмиразрядный дисплей, такой же как и в Б3-14. Получалось, что если отображать число с мантиссой и порядком, то на индикаторе умещается только пять значащих цифр. Чтобы решить эту проблему в микрокалькуляторе использовалась клавиша "CN". Если, к примеру, результатом вычислений являлось число 1.2345678e-12, то на индикаторе оно отображалось как 1.2345-12. Нажав | F | CN |, видим на индикаторе 12345678. Запятая при этом гаснет.