На каких таймингах быстрее оперативная память ddr2. Что такое тайминги оперативной памяти? Настройка таймингов: нюансы

Основные характеристики оперативной памяти (ее объем, частота, принадлежность к одному из поколений) могут быть дополнены еще одним важнейшим параметром - таймингами. Что они представляют собой? Можно ли их изменять в настройках BIOS? Как это делать наиболее корректным, с точки зрения стабильной работы компьютера, образом?

Что такое тайминги ОЗУ?

Тайминг оперативной памяти - это временной интервал, за который команда, отправляемая контроллером ОЗУ, выполняется. Измеряется эта единица в количестве тактов, которые пропускаются вычислительной шиной, пока идет обработка сигнала. Сущность работы таймингов проще понять, если разобраться в устройстве микросхем ОЗУ.

Оперативная память компьютера состоит из большого количества взаимодействующих ячеек. Каждая имеет свой условный адрес, по которому к ней обращается контроллер ОЗУ. Координаты ячеек, как правило, прописываются посредством двух параметров. Условно их можно представить как номера строк и столбцов (как в таблице). В свою очередь, группы адресов объединяются, чтобы контроллеру было "удобнее" находить конкретную ячейку в более крупную область данных (иногда ее называют "банком").

Таким образом, запрос к ресурсам памяти осуществляется в две стадии. Сначала контроллер отправляет запрос к "банку". Затем он запрашивает номер "строки" ячейки (посылая сигнал типа RAS) и ждет ответа. Длительность ожидания - это и есть тайминг оперативной памяти. Его общепринятое наименование - RAS to CAS Delay. Но это еще не все.

Контроллеру, чтобы обратиться к конкретной ячейке, нужен также и номер приписанного к ней "столбца": посылается другой сигнал, типа CAS. Время, пока контроллер ждет ответа, - это тоже тайминг оперативной памяти. Он называется CAS Latency. И это еще не все. Некоторые IT-специалисты предпочитают интерпретировать такое явление, как CAS Latency, несколько иначе. Они полагают, что этот параметр указывает, сколько должно пройти единичных тактов в процессе обработки сигналов не от контроллера, а от процессора. Но, как отмечают эксперты, речь в обоих случаях, в принципе, идет об одном и том же.

Контроллер, как правило, работает с одной и той же "строкой", на которой расположена ячейка, не один раз. Однако, прежде чем обратиться к ней повторно, он должен закрыть предыдущую сессию запроса. И только после этого возобновлять работу. Временной интервал между завершением и новым вызовом строки - это тоже тайминг. Называется он RAS Precharge. Уже третий по счету. На этом все? Нет.

Поработав со строкой, контроллер должен, как мы помним, закрыть предыдущую сессию запроса. Временной интервал между активацией доступа к строке и его закрытием - это тоже тайминг оперативной памяти. Его наименование - Active to Precharge Delay. В принципе, теперь все.

Мы насчитали, таким образом, 4 тайминга. Соответственно, записываются они всегда в виде четырех цифр, например, 2-3-3-6. Кроме них, к слову, есть еще один распространенный параметр, которым характеризуется оперативная память компьютера. Речь идет о значении Command Rate. Оно показывает, какое минимальное время тратит контроллер на то, чтобы переключиться от одной команды к другой. То есть, если для CAS Latency значение - 2, то временная задержка между запросом от процессора (контролера) и ответом модуля памяти составит 4 такта.

Тайминги: порядок расположения

Каков порядок расположения в этом числовом ряду каждого из таймингов? Он практически всегда (и это своего рода отраслевой "стандарт") таков: первая цифра - это CAS Latency, вторая - RAS to CAS Delay, третья - RAS Precharge и четвертая - Active to Precharge Delay. Как мы уже сказали выше, иногда используется параметр Command Rate, его значение пятое в ряду. Но если для четырех предыдущих показателей разброс цифр может быть достаточно большим, то для CR возможно, как правило, только два значения - T1 или T2. Первый означает, что время с момента, когда память активируется, до наступления ее готовности отвечать на запросы должен пройти 1 такт. Согласно второму - 2.

О чем говорят тайминги?

Как известно, объем ОЗУ - один из ключевых показателей производительности этого модуля. Чем он больше - тем лучше. Другой важный параметр - это частота оперативной памяти. Здесь тоже все однозначно. Чем она выше, тем ОЗУ будет работать быстрее. А что с таймингами?

В отношении них закономерность иная. Чем меньше значения каждого из четырех таймингов - тем лучше, тем производительнее память. И тем быстрее, соответственно, работает компьютер. Если у двух модулей с одинаковой частотой разные тайминги оперативной памяти, то и их производительность будет отличаться. Как мы уже определили выше, нужные нам величины выражаются в тактах. Чем их меньше, тем, соответственно, быстрее процессор получает ответ от модуля ОЗУ. И тем скорее он может "воспользоваться" такими ресурсами, как частота оперативной памяти и ее объем.

"Заводские" тайминги или свои?

Большинство пользователей ПК предпочитает использовать те тайминги, которые установлены еще на конвейере (либо в опциях материнской платы выставлена автонастройка). Однако на многих современных компьютерах есть возможности для того, чтобы выставить нужные параметры вручную. То есть, если нужны более низкие значения - их, как правило, можно проставить. Но как изменить тайминги оперативной памяти? Причем сделать это так, чтобы система работала стабильно? А еще, быть может, есть случаи, при которых лучше выбрать увеличенные значения? Как выставить тайминги оперативной памяти оптимальным образом? Сейчас мы попробуем дать ответы на эти вопросы.

Настраиваем тайминги

Заводские значения таймингов прописываются в специально отведенной области микросхемы ОЗУ. Называется она SPD. Используя данные из нее, система BIOS адаптирует оперативную память к конфигурации материнской платы. Во многих современных версиях BIOS настройки таймингов, выставленные по умолчанию, можно корректировать. Практически всегда это осуществляется программным методом - через интерфейс системы. Изменение значений как минимум одного тайминга доступно в большинстве моделей материнских плат. Есть, в свою очередь, производители, которые допускают тонкую настройку модулей ОЗУ при задействовании гораздо большего количества параметров, чем четыре указанных выше типа.

Чтобы войти в область нужных настроек в BIOS, нужно, зайдя в эту систему (клавиша DEL сразу после включения компьютера), выбрать пункт меню Advanced Chipset Settings. Далее в числе настроек находим строку DRAM Timing Selectable (может звучать несколько по-другому, но похоже). В нем отмечаем, что значения таймингов (SPD) будут выставляться вручную (Manual).

Как узнать тайминг оперативной памяти, установленный в BIOS по умолчанию? Для этого мы находим в соседствующих настройках параметры, созвучные CAS Latency, RAS to CAS, RAS Precharge и Active To Precharge Delay. Конкретные значения таймингов, как правило, зависят от типа модулей памяти, установленных на ПК.

Выбирая соответствующие опции, можно задавать значения таймингов. Эксперты рекомендуют понижать цифры очень постепенно. Следует, выбрав желаемые показатели, перезагружаться и тестировать систему на предмет устойчивости. Если компьютер работает со сбоями, нужно вернуться в BIOS и выставить значения на несколько уровней выше.

Оптимизация таймингов

Итак, тайминги оперативной памяти - какие лучше значения для них выставлять? Почти всегда оптимальные цифры определяются в ходе практических экспериментов. Работа ПК связана не только с качеством функционирования модулей ОЗУ, и далеко не только скоростью обмена данными между ними и процессором. Важны многие другие характеристики ПК (вплоть до таких нюансов, как система охлаждения компьютера). Поэтому практическая результативность изменения таймингов зависит от конкретной программно-аппаратной среды, в которой пользователь производит настройку модулей ОЗУ.

Общую закономерность мы уже назвали: чем ниже значения таймингов, тем выше скорость работы ПК. Но это, конечно, идеальный сценарий. В свою очередь, тайминги с пониженными значениями могут пригодиться при "разгоне" модулей материнской платы - искусственном завышении ее частоты.

Дело в том, что если придать микросхемам ОЗУ ускорение в ручном режиме, задействовав слишком большие коэффициенты, то компьютер может начать работать нестабильно. Вполне возможен сценарий, при котором настройки таймингов будут выставлены настолько некорректно, что ПК и вовсе не сможет загрузиться. Тогда, скорее всего, придется "обнулять" настройки BIOS аппаратным методом (с высокой вероятностью обращения в сервисный центр).

В свою очередь, более высокие значения для таймингов могут, несколько замедлив работу ПК (но не настолько, чтобы скорость функционирования была доведена до режима, предшествовавшего "разгону"), придать системе стабильности.

Некоторыми IT-экспертами подсчитано, что модули ОЗУ, обладающие CL в значении 3, обеспечивают примерно на 40 % меньшую задержку в обмене соответствующими сигналами, чем те, где CL равен 5. Разумеется, при условии, что тактовая частота и на том, и на другом одинаковая.

Дополнительные тайминги

Как мы уже сказали, в некоторых современных моделях материнских плат есть возможности для очень тонкой настройки работы ОЗУ. Речь, конечно, не идет о том, как увеличить оперативную память - этот параметр, безусловно, заводской, и изменению не подлежит. Однако в предлагаемых некоторыми производителями настройках ОЗУ есть очень интересные возможности, задействуя которые, можно существенно ускорить работу ПК. Мы же рассмотрим те, что относятся к таймингам, которые можно конфигурировать в дополнение к четырем основным. Важный нюанс: в зависимости от модели материнской платы и версии BIOS, названия каждого из параметров могут отличаться от тех, которые мы сейчас приведем в примерах.

1. RAS to RAS Delay

Этот тайминг отвечает за задержку между моментами, когда активизируются строки из разных областей консолидации адресов ячеек ("банков" то есть).

2. Row Cycle Time

Этот тайминг отражает временной интервал, в течение которого длится один цикл в рамках отдельной строки. То есть от момента ее активизации до начала работы с новым сигналом (с промежуточной фазой в виде закрытия).

3. Write Recovery Time

Данный тайминг отражает временной интервал между двумя событиями - завершением цикла записи данных в память и началом подачи электросигнала.

4. Write To Read Delay

Данный тайминг показывает, сколько должно пройти времени между завершением цикла записи и моментом, когда начинается чтение данных.

Во многих версиях BIOS также доступен параметр Bank Interleave. Выбрав его, можно настроить работу процессора так, чтобы он обращался к тем самым "банкам" ОЗУ одновременно, а не по очереди. По умолчанию этот режим функционирует автоматически. Однако можно попробовать выставить параметр типа 2 Way или 4 Way. Это позволит задействовать 2 или 4, соответственно, "банка" одновременно. Отключение режима Bank Interleave используется довольно редко (это, как правило, связано с диагностикой ПК).

Настройка таймингов: нюансы

Назовем некоторые особенности, касающиеся работы таймингов и их настройки. По мнению некоторых IT-специалистов, в ряду из четырех цифр наибольшее значение имеет первая, то есть тайминг CAS Latency. Поэтому, если у пользователя немного опыта в "разгоне" модулей ОЗУ, эксперименты, возможно, следует ограничить выставлением значений только для первого тайминга. Хотя эта точка зрения не является общепринятой. Многие IT-эксперты склонны считать, что три других тайминга не менее значимы с точки зрения скорости взаимодействия между ОЗУ и процессором.

В некоторых моделях материнских плат в BIOS можно настроить производительность микросхем оперативной памяти в нескольких базовых режимах. По сути, это выставление значений таймингов по шаблонам, допустимым с точки зрения стабильной работы ПК. Эти опции обычно соседствуют с параметром Auto by SPD, а режимы, о которых идет речь, - Turbo и Ultra. Первый подразумевает умеренное ускорение, второй - максимальное. Эта возможность может быть альтернативой выставлению таймингов вручную. Похожие режимы, к слову, есть во многих интерфейсах усовершенствованной системы BIOS - UEFI. Во многих случаях, как отмечают эксперты, при включении опций Turbo и Ultra достигается в достаточной мере высокая производительность ПК, а его работа при этом стабильна.

Такты и наносекунды

Реально ли выразить тактовые циклы в секундах? Да. И для этого существует очень простая формула. Такты в секундном выражении считаются делением единицы на фактическую тактовую частоту ОЗУ, указываемую производителем (правда, этот показатель, как правило, нужно делить на 2).

То есть, например, если мы хотим узнать такты, формирующие тайминги оперативной памяти DDR3 или 2, то мы смотрим на ее маркировку. Если там указана цифра 800, то фактическая частота ОЗУ будет равна 400 МГЦ. Это значит, что длительность такта составит значение, получаемое в результате деления единицы на 400. То есть 2,5 наносекунды.

Тайминги для модулей DDR3

Одни из самых современных модулей ОЗУ - микросхемы типа DDR3. Некоторые специалисты считают, что в отношении них такие показатели, как тайминги, имеют гораздо меньшее значение, чем для чипов предыдущих поколений - DDR 2 и более ранних. Дело в том, что эти модули, как правило, взаимодействуют с достаточно мощными процессорами (такими как, например, Intel Core i7), ресурсы которых позволяют не столь часто обращаться к ОЗУ. Во многих современных чипах от Intel, так же, как и в аналогичных решениях от AMD, есть достаточная величина собственного аналога ОЗУ в виде L2- и L3-кэша. Можно сказать, что у таких процессоров есть свой объем оперативной памяти, способный выполнять значительный объем типовых для ОЗУ функций.

Таким образом, работа с таймингами при использовании модулей DDR3, как мы выяснили, - не самый главный аспект "разгона" (если мы решим ускорить производительность ПК). Гораздо большее значение для таких микросхем имеют как раз-таки параметры частоты. Вместе с тем, модули ОЗУ вида DDR2 и даже более ранних технологических линеек сегодня все еще ставятся на компьютеры (хотя, конечно, повсеместное использование DDR3, по оценке многих экспертов, - более чем устойчивый тренд). И потому работа с таймингами может пригодиться очень большому количеству пользователей.

Уже почти год как память стандарта DDR3 стала оптимальной по соотношению цены и производительности для установки в современный ПК. Однако далеко не все пользователи стремятся иметь компьютер с самой новой «начинкой», многих устраивает и имеющаяся производительность. Вот только программные комплексы из года в год становятся более функциональными и прожорливыми к ресурсам памяти. Именно нехватка оперативной памяти, часто ведет к существенному снижению производительности всей системы. Вот и приходится приобретать не самые передовые, но очень необходимые модули памяти стандарта DDR2-800 для увеличения быстродействия настольного ПК.

Не прибывая в долгом поиске, мы взяли для тестирования самые доступные из оказавшихся в нашем распоряжении модули памяти DDR2-800 TwinMOS 8DRT5MA8-TATP.

Два модуля памяти TwinMOS 8DRT5MA8-TATP объемом по 2 ГБ являются самыми обычными решениями DDR2 с реальной рабочей частотой микросхем памяти до 400 МГц. Они явно не претендуют на оверклокерские перспективы и эксклюзивный дизайн, но сейчас нас больше интересует надежность работы и их возможности, быстродействие.

Отсутствие упаковки у TwinMOS 8DRT5MA8-TATP DDR2-800 свидетельствует о том, что это OEM продукт, который, как и все товары этой категории, обладает невысокой ценой. Однако это ни как не должно отразиться на стабильности работы и быстродействии данных модулей оперативной памяти.

Сами модули выполнены на двусторонней печатной плате, с каждой стороны которой находятся по 8 микросхем. Никакого радиатора здесь не предусматривается, что может ограничить возможности разгона микросхем памяти. Однако потребность в дополнительном охлаждении при установке TwinMOS 8DRT5MA8-TATP в стандартный ПК со штатными частотами работы модулей памяти возникнуть не должна.

На одной из боковых сторон имеется наклейка, которая несет информацию о модели модуля, его объеме в 2 ГБ, стандарте DDR2 и эффективной рабочей частоте 800 МГц (PC6400). Также здесь приводится и некоторая более низкоуровневая информация: архитектура модуля 8x128 МБ 16IC, т.е. он состоит из 2x 8 чипов по 128 МБ; основная задержка Column Address Strobe (CAS) latency или сокращенно CL составляет 6 тактов; сам модуль конструктивно выполнен в виде U-DIMM – обычная не буферизированная память для ПК.

Чипы памяти, из которых набраны модули, имеют собственную маркировку производителя. Наличие у компании TwinMOS полного цикла производства памяти должно несколько снижать себестоимость конечной продукции.

Утилиты CPU-Z и AIDA64 достаточно подробно визуализируют информацию, которая записана в SPD модуля. По этим инструкциям BIOS материнской платы автоматически определяет рекомендованные режимы работы модулей памяти, что позволяет максимально корректно настроить систему для запуска. В модуле TwinMOS 8DRT5MA8-TATP записаны четыре стандартных JEDEC-режима работы: DDR2-533, DDR2-667 и DDR2-800 при соответствующих задержках и напряжении питания 1,8 В. Наиболее быстрым, а значить и наиболее востребованным, режимом является DDR2-800 при задержках (таймингах) 6-6-6-18-24 для CL-tRCD-tRP-tRAS-tRC соответственно.

Какими-либо расширениями (EPP или XMP), а также сертификатом «SLI Ready», данные модули отличиться не смогут. С одной стороны это говорит об ориентации этой оперативной памяти на работу в обычных системах, а с другой – ничто не увеличивает их стоимость.

Характеристики модуля:

Производитель и модель

TwinMOS 8DRT5MA8-TATP

Тип памяти

Объем модуля, ГБ

Форм-фактор

Стандартные режимы работы JEDEC

DDR2-800 6-6-6-18-24 1.8V
DDR2-667 5-5-5-15-20 1.8V
DDR2-533 4-4-4-12-16 1.8V

Расширенные профили XMP/EPP

Дополнительные сертификаты

Рабочий диапазон температур, ºС

Энергопотребление, мВт

247 при 1,8 В

Сайт производителя

Техническая информация, которую нам удалось найти для модулей TwinMOS 8DRT5MA8-TATP, не выделяет их ничем среди массы подобных решений. Намного более интересными должны оказаться данные реального тестирования и анализа быстродействия и разгонного потенциала.

Тестирование производительности

В тестирование в качестве оппонентов паре TwinMOS 8DRT5MA8-TATP использовались два модуля Team Elite-800 TEDD2048M800HC6, которые имеют аналогичные рабочие характеристики.

Так же для анализа прироста производительности от использования DDR3 в сравнении с DDR2 памятью были взяты два модуля DDR3 TwinMOS 9DRTBKZ8-TATP, которые в виду ограничений материнской платы смогли заработать на реальной частоте в 533 МГц.

Стенд для тестирования оперативной памяти.

Процессор

Intel Core 2 Duo E6300 (Conroe-2M, LGA775, 1,866 ГГц, L2 2 МБ)

Материнские платы

MSI P45C NEO-FIR (Intel P45, LGA 775, DDR2/DDR3, ATX)

Кулер (Intel)

Thermalright SI-128 (LGA775) + VIZO Starlet UVLED120 (62,7 CFM, 31,1 дБ)

Видеокарта

ZOTAC GeForce GTX 480 AMP! (NVIDIA GeForce GTX 480, 1,5 ГБ GDDR5, PCIe 2.0)

Жесткий диск

Hitachi Deskstar HDS721616PLA380 (160 ГБ, 16 МБ, SATA-300)

Оптический привод

ASUS DRW-1814BLT SATA

Блок питания

Seasonic M12II-500 (SS-500GM), 120 мм fan

Как уже было сказано, рекомендованными рабочими режимами для памяти TwinMOS 8DRT5MA8-TATP являются DDR2-800 6-6-6-18-24 1.8V, DDR2-667 5-5-5-15-20 1.8V, DDR2-533 4-4-4-12-16 1.8V. При тестировании будет использоваться режим DDR2-800 6-6-6-18-24 1.8V, так как он самый востребованный и самый производительный из стандартных для этих модулей памяти. Также 2х TwinMOS 8DRT5MA8-TATP будут протестированы в разогнанном до частоты 533 МГц (DDR2-1066 при таймигнах 6-6-6-18) состоянии.

В результате анализа полученных результатов, можно смело говорить о полном соответствии производительности модулей TwinMOS 8DRT5MA8-TATP быстродействию Team Elite-800 TEDD2048M800HC6, которые имеют такую же эффективную рабочую частоту. Малозаметные колебания производительности можно назвать погрешностью тестирования.

Интересен и факт незначительного снижения быстродействия системы при использовании модулей памяти стандарта DDR3-1066 7-7-7-20 в отличие от разогнанных до частоты 533 МГц при задержках 6-6-6-18 модулей памяти стандарта DDR2. Сказались более высокие тайминги работы памяти DDR3 TwinMOS 9DRTBKZ8-TATP, что увеличило её время отклика.

Проверка стабильности работы модулей памяти TwinMOS 8DRT5MA8-TATP осуществлялась различными тестами, в том числе стандартным модулем проверки памяти, который встроен в операционную систему WINDOWS 7.

Как видно из приведенного изображения, неполадок после 184 итераций теста обнаружено не было. Такие результаты говорят об отличной стабильности работы попавших на тестирование модулей памяти DDR2-800 TwinMOS 8DRT5MA8-TATP, а именно этот критерий и является для оперативной памяти этого класса самым главным. Однако стабильность работы на рекомендованных частотах и хорошее быстродействие это не все факторы, которые учитываются при выборе модулей памяти во время их покупки. Значительную долю уверенности в длительном сроке стабильной работы модулей памяти TwinMOS 8DRT5MA8-TATP, может привнести и присутствие возможности их разгона.

Разгон

Разгон комплекта памяти DDR2-400 TwinMOS 8DRT5MA8-TATP был произведен при стандартных наборах задержек (6-6-6-18) без увеличения напряжения питания 1,8 В простым методом увеличения множителя, который доступен на используемой материнской плате.

Модули памяти смогли покорить частоту в 533 МГц, что не характерно для массовых микросхем памяти DDR2 этого класса от других производителей. Работа на этой частоте была протестирована несколькими тестовыми пакетами, в том числе стандартным модулем проверки, встроенным в операционную систему WINDOWS 7.

Частотный запас, который выливается в разгонный потенциал, часто является залогом надежности и долговечности работы микросхем памяти в номинальном режиме, а для таких доступных модулей DDR2-800 как TwinMOS 8DRT5MA8-TATP он станет и важным аргументом в процессе выбора. Кроме того, на момент написания статьи стоимость одного модуля TwinMOS 8DRT5MA8-TATP составила чуть более 26 $ за 2 ГБ DDR2-800 по данным сайта официального дистрибьютора .

Стоит оговориться, что возможность разгона вряд ли будет распространяться на все модули памяти с такой маркировкой. В любом разгоне присутствует большая доля везения. Однако всегда можно купить попробовать и вернуть продукт в магазин. Благо наши законы это позволяют.

Итоги

Модули памяти DDR2-800 TwinMOS 8DRT5MA8-TATP, которые принимали участие в нашем обзоре, являются недорогим массовым решением. Наравне с отличной стабильностью работы, данные модули памяти обладают хорошим разгонным потенциалом и имеют очень доступную цену. В сравнении с более дорогими участниками нашего тестирования, модулями памяти Team Elite-800 TEDD2048M800HC6, решения от компании TwinMOS являются более доступными при равных возможностях. Работая в номинальном режиме с задержками 6-6-6-18, эти модули обеспечивают такой же уровень быстродействия, как и любая другая оперативная память DDR2, которая работает на сходной частоте. Протестированная нами возможность стабильной работы на частоте в 533 МГц (DDR2-1066) с задержками 6-6-6-18 при напряжении питания 1,8 В поможет немного ускорить компьютер пользователя и является значительным залогом высокой надежности данных модулей при их работе в номинальном режиме.

Статья прочитана 11115 раз(а)

Подписаться на наши каналы

Как оказалось, наибольший интерес почти у всех читателей вызывают вопросы влияния
таймингов DDR2 на производительность, а также то, насколько ее латентность окажется
выше по сравнению с предыдущим стандартом DDR400. Как мы уже говорили в прошлых
статьях, касающихся нюансов функционирования подсистем памяти с чипсетами предыдущих
поколений, вклад основных таймингов (к примеру, CAS Latency или RAS-to-CAS) в
общий результат — величина непостоянная, очень сильно зависящая от используемой
платформы и конфигурации. Так, наибольший рост быстродействия за счет уменьшения
задержек зафиксирован на AMD Athlon 64 (Socket 939) — при снижении значений с
8-4-4-3 (для DDR400) до 5-2-2-2 он составил в реальных задачах около 20%. В системах
на чипсетах ATI 9100IGP для платформы Socket 478, отличающихся от конкурентов
самой высокой латентностью, подобное понижение таймингов добавило лишь около 3%
производительности.

Следовательно, пока можно сделать предварительный вывод — чем меньше общая
латентность контроллера памяти, тем большее влияние на быстродействие оказывают
настройки подсистемы памяти
. Не вдаваясь в теоретические размышления (см.
статью "Подсистема памяти — чем дальше, тем страшнее…"),
сразу перейдем к рассмотрению ситуации с DDR2.

Таблица
1. Сравнение приведенных задержек доступа к памяти (нс)
Режимы
работы памяти (тайминги 8-4-4-3)
DDR400 DDR-533 DDR2-400 DDR2-533 DDR2-667 DDR2-800
DRAM
Command Rate (CMD rate) — время нахождения микросхемы с необходимыми данными
5 3,8 10,0 7,7 6,0 5
Row
Cycle time (T RC) — время
активности банка
RAS#
Active time (T RAS) — время
активности страницы
RAS-to-CAS (T RCD)
— время между определением адреса строки и столбца
20 15,4 40,0 30,8 24,0 20
CAS# Latency
(T CL) — время между определением
адресного массива и началом считывания
15 11,5 30,0 23,1 18,0 15
RAS#
Precharge time (T RP) — время
для перезарядки страницы
20 15,4 40,0 30,8 24,0 20
Общее
время задержек
60 46,2 120,0 92,3 72,0 60

Для большей наглядности выясним (табл. 1), как отличаются по времени выполнения полные циклы операций с памятью стандартов DDR400 и DDR2-533. Сделаем еще одно важное замечание, о котором часто забывают пользователи, — в подавляющем большинстве BIOS Setup материнских плат тайминги приведены в тактах реальной (!) физической шины , т. е. для DDR400 это такты 200 MHz шины, а для DDR2-533 — 133 MHz. Как видно из таблицы, общее (теоретическое) время задержек при доступе к памяти действительно значительно меньше у DDR400 даже с учетом одинаковых таймингов. Также наглядно можно убедиться, что латентность обоих стандартов уравняется только после появления DDR2-800.

Здесь необходимо сделать несколько пояснений. Во-первых, указанная латентность DDR533, DDR2-533/667/800 справедлива только при равнозначной пропускной способности процессорной шины. Во-вторых, не следует забывать, что, когда выйдет стандарт DDR2-800, при одинаковой латентности с DDR400 объем передаваемых данных будет уже в два раза выше — 6,4 GBps (при одноканальном 64-битном доступе) против 3,2 GBps у DDR400. Также данная таблица наверняка поможет понять принципы "вложенности" таймингов — к примеру, самый большой из доступных таймингов DRAM Cycle time (T RAS) , в идеале, должен равняться сумме RAS-to-CAS и CAS Latency . В случае T RAS > T RCD +T CL освобождаются дополнительные такты для синхронизации сигналов, что приводит к росту стабильности при незначительном снижении производительности. Противоположный вариант — T RAS < T RCD +T CL — либо невозможен в принципе (контроллеры предыдущих чипсетов вообще не позволяли устанавливать это значение меньше 5, что заведомо больше минимальных 2+2), либо просто заданные цифры будут корректироваться в большую сторону — по той простой причине, что время активности сигнала RAS# не может быть меньше, чем потребуется на определение адреса строки и столбца (т. е. массива считываемых данных).

Забегая вперед, заметим, что нам удалось установить тайминги 3-3-2-3 для DDR2-533, при этом все программы-идентификаторы подтвердили данные значения, но никакой разницы по сравнению с 6-3-2-3 даже в низкоуровневых тестах обнаружить не удалось, что полностью подтверждает вышесказанное.

На многих материнских платах под Socket 754/939 (AMD Athlon 64) есть возможность задавать еще несколько параметров, в числе которых Row Cycle time (T RC) и Write Enable (T WE) . Первый отображает минимальное время активности всего банка памяти и равняется соответственно T RAS +T RP . Если установить значение больше данной суммы, при необходимости освобождаются дополнительные такты для регенерации, в обратной ситуации система либо станет работать нестабильно (равносильно заниженному T RP), либо, как и в случае T RAS , будет просто игнорироваться. Тайминг T WE задает минимальное время, за которое должен быть выдан сигнал о том, что ячейки готовы к операции записи; как можно догадаться, его уменьшение приводит к увеличению скорости в режиме записи. На материнских платах с чипсетами Intel данный параметр, как правило, закрыт для изменения, но именно его прошитыми значениями можно объяснить разную скорость записи у моделей от различных производителей. Что касается тайминга DRAM Command rate (CMD rate), то он определяет, сколько времени потребуется для нахождения необходимой микросхемы — иными словами, нужного банка. У чипсетов для Socket 478 CMD rate по умолчанию равняется 1Т, для десктопной платформы AMD64 составляет 2Т (иногда изменяется до 1Т). Заметим, один такт задержки возможен только при последовательном обращении, а при произвольном доступе к памяти в любом случае тратится два такта.

Итак, небольшой ликбез по таймингам будем считать законченным. Перейдем к рассмотрению реальных примеров с использованием памяти DDR2 в новых настольных платформах Intel.

Таблица
2. Параметры производительности при различных режимах работы памяти
Режим тестирования Максимальная
Скорость чтения,
MBps
Скорость записи,
MBps
Латентность,
нс
12-4-4-4 DDR2-533 5330 4048 2230 82
6-3-2-3 DDR2-533 5466 4280 2260 79
12-4-4-4 DDR2-400 4847 3884 1906 88
5-2-2-3 DDR2-400 4951 4086 1952 81
Таблица
3. Значения удельной производительности*
Режим тестирования Максимальная
производительность памяти, MBps
Скорость чтения,
MBps
Скорость записи,
MBps
12-4-4-4 DDR2-533 10,0 7,6 4,2
6-3-2-3 DDR2-533 10,3 8,0 4,2
12-4-4-4 DDR2-400 12,1 9,7 4,8
5-2-2-3 DDR2-400 12,4 10,2 4,9

* на 1
MHz эффективной частоты.

Результаты тестирования

Для простоты понимания и наглядности данные, представленные в табл. 2, продублированы на диаграммах. Как можно заметить, даже несмотря на то, что в обоих случаях (DDR2-400 и DDR2-533) частота процессорной шины составляла всего 800 MHz, абсолютная производительность подсистемы памяти существенно увеличилась при переходе от 400 к 533 MHz. Наибольший вклад приходится именно на значительное увеличение скорости записи. Однозначно следует сказать, что контроллеры новых чипсетов Intel 915/925 изначально проектировались исключительно на частоты шины памяти 533 MHz и выше, а поддержка DDR2-400 реализована лишь для совместимости.

Еще одним веским тому подтверждением служат график, демонстрирующий скорость "отклика" подсистемы памяти в зависимости от величины пакета, и диаграмма с результатами средней латентности. Это первый случай, когда асинхронный режим работы шины памяти и процессора, да еще с увеличенными таймингами, оказался более производительным по сравнению с синхронным с меньшими уровнями задержек. Наверняка данная ситуация сохранится с выходом CPU, имеющим шину 266 (1066) MHz; примерно в то же время должны появиться в широкой продаже первые модули DDR2-667. Каким-то образом инженерам Intel удалось повысить быстродействие операций записи за счет освободившихся тактов ожидания процессора. По удельной же производительности (скорость передачи данных при 1 MHz эффективной частоты), разумеется, режим DDR2-400 имеет несколько больший КПД (табл. 3), однако, как мы уже сказали, разница оказалась намного меньшей, чем ожидалось.

Известный факт: из реальных приложений, способных адекватно воспринять сокращение задержек памяти, со значительным отрывом вперед выходят игры. Справедливости ради заметим, что ПО, работающее по принципу базы данных, также весьма чувствительно к настройкам памяти, но это, как говорится, уже совсем другая история. Для анализа изменения быстродействия в развлекательных задачах мы традиционно выбрали Unreal Tournament 2003. Видно, что разница между минимальным режимом 12-4-4-4 для DDR2-400 и 6-3-2-3 для DDR2-533 равняется 15 кадров в секунду, что составило около 8% прироста производительности. Действительно, такой отрыв можно назвать существенным, учитывая использование в тестах далеко не самой быстрой видеокарты на базе NVidia PCX5900.


Модули DDR2-533


Kingston KVR533

Micron PC2-4300U

Samsung PC2-4300U

Transcend DDR2-533

Отрадно сообщить, что компании, специализирующиеся на поставках модулей памяти,
практически сразу после анонсирования новой десктопной платформы Intel начали
поставки на отечественный рынок линеек DDR2-400 ECC для серверов и рабочих станций
(о них мы расскажем в будущих материалах) и DDR2-533 для настольных систем. Нам
удалось протестировать продукцию таких известных брендов, как Micron, Samsung,
Transcend и Kingston. Во всех модулях применялись микросхемы BGA со временем доступа
3,75 нс, что в точности соответствует эффективной частоте 533 MHz. В Micron и
Samsung, как обычно, установлены микросхемы одноименных производителей, тогда
как Kingston и Transcend построены на идентичных чипах от Elpida. Интересно, что
во время масштабного тестирования модулей DDR400, проведенного нами в начале нынешнего
года, ни один из продуктов не базировался на микросхемах этой японской компании.

Не вдаваясь в определение разгонного потенциала (пока невостребованного), мы решили ограничиться проверкой минимальных задержек в режиме DDR2-533 при стандартном напряжении 1,8 В и при его увеличении до 2 В (результаты приведены в табл. 4). Продукция Micron всегда была эталоном качества и производительности, не стали исключением и новые модули. При штатном и повышенном уровне питания они стабильно работали с меньшими задержками, тем более что при 2 В мо-дули MT16HTF6464AG оказались единственными, кому покорилось значение 2Т для RAS# Precharge. Неудивительно, что память от Kingston и Transcend продемонстрировала идентичные результаты, которые были чуть выше, чем у Samsung PC2-4300U. Попытка запустить тестовую систему в режиме DDR2 667 даже с таймингами 12-4-4-4 и при увеличенном напряжении ни с одним из комплектов модулей не увенчалась успехом. Жаль, что на тестирование не успели попасть линейки памяти от Hynix — как известно, продукция именно этого производителя задает тон на мировом рынке.

Таблица
4. Сравнительные характеристики модулей памяти PC2-4300 (DDR2-533)
Модуль памяти Samsung PC2-4300U Micron PC2-4300U Kingston KVR533 Transcend DDR2-533
Прошитые тайминги
для режима DDR2-533
11-4-4-4 12-4-4-4 12-4-4-4 11-4-4-4
Минимальные
тайминги приштатном напряжении 1,8 В
8-4-3-3 6-3-3-3 8-3-3-3 8-3-3-3
Минимальные
тайминги при повышенном напряжении 2 В
7-4-3-3 6-3-2-3 6-3-3-3 6-3-3-3

Выводы

Этот материал — уже третий по счету, в котором серьезно затрагивается вопрос функционирования нового стандарта системной памяти DDR2. Но согласитесь, если уже в следующем году DDR2 станет массовым, подобные усилия оправданы. "Не цепляясь" за текущее сравнение DDR и DDR2, с уверенностью можно сказать, что сама технология DDR2 "не так страшна, как ее малюют", тем более что перспективы у нее очень радужные. На сайтах большинства производителей чипов уже имеется информация о готовых продуктах DDR2-667 (модули с индексом PC2-5300). Зачем далеко ходить, если в спартанских по тонким настройкам BIOS Setup материнских плат Intel присут-ствует возможность выбора этого режима, а чипсеты SiS под Socket LGA775 вообще официально поддерживают память с эффективной частотой 667 MHz.

Как мы сегодня выяснили, теоре-тически новые контроллеры, рассчитанные на применение DDR2, должны быть куда более инертными по сравнению со своими предшественниками, работающими с DDR400. Однако, как показали наши прошлые тестирования, на практике эта разница оказалась менее заметной, в чем есть реальная заслуга инженеров R&D-отдела компании Intel.

Помимо SiS, еще один крупнейший производитель чипсетов, компания VIA Technologies, также в ближайшее время покажет миру свои наборы логики под новые процессоры Intel и память DDR2. Очень будет интересно сравнить эти три решения, что мы обязательно сделаем, как только представится такая возможность.

На самом деле "страшные" значения таймингов для модулей PC2-4300 (к примеру, 12-4-4-4) еще вовсе не означают, что их нельзя привести к более привычным 6-3-3-3 (аналогичная ситуация наблюдается с линейками памяти DDR400, когда стандартная прошивка 8-4-4-3 совсем не мешает выставить на большинстве из них 5-3-2-2,5).

Модули, попавшие к нам на тестирование, являются типичными массовыми изделиями,
которым далеко до оверклокерских моделей, однако появление таковых не за горами.
Да и вообще, учитывая быстрые темпы выхода на украинский рынок новых систем Intel
и сопутствующего оборудования в виде видеокарт PCI Express и памяти DDR2, можно
ручаться, что не пройдет и полгода, как большинство отечественных пользователей
перестанут воспринимать платформу Socket 775 с ее нововведениями как что-то уникальное
и далекое от реальной жизни.

Конфигурация
тестовой системы
Платформа Intel
Процессор Intel Pentium
4 (Prescott) 3,6 GHz, Socket LGA775, FSB 800 MHz
Материнская
плата
Intel D925XCV,
чипсет i925X
Референсная
память
Micron PC2-4300U
(DDR2-533), 2x512 MB
Видеокарта Leadtek PCX5900
128 MB (FX 5900XT, PCI Express)
Режимы тестирования
видео
480/830 MHz
(чип/память), ForceWare 62.01
Жесткий диск Western
Digital WD1600 (160 GB, 7200 об/мин)
ОС Windows XP Professional
SP2, DirectX 9.0c

История оперативной памяти , или ОЗУ , началась в далёком 1834 году, когда Чарльз Беббидж разработал «аналитическую машину» - по сути, прообраз компьютера. Часть этой машины, которая отвечала за хранение промежуточных данных, он назвал «складом». Запоминание информации там было организовано ещё чисто механическим способом, посредством валов и шестерней.

В первых поколениях ЭВМ в качестве ОЗУ использовались электронно-лучевые трубки, магнитные барабаны, позже появились магнитные сердечники, и уже после них, в третьем поколении ЭВМ появилась память на микросхемах.

Сейчас ОЗУ выполняется по технологии DRAM в форм-факторах DIMM и SO-DIMM , это динамическая память, организованная в виде интегральных схем полупроводников. Она энергозависима, то есть данные исчезают при отсутствии питания.

Выбор оперативной памяти не является сложной задачей на сегодняшний день, главное здесь разобраться в типах памяти, её назначении и основных характеристиках.

Типы памяти

SO-DIMM

Память форм-фактора SO-DIMM предназначена для использования в ноутбуках, компактных ITX-системах, моноблоках - словом там, где важен минимальный физический размер модулей памяти. Отличается от форм-фактора DIMM уменьшенной примерно в 2 раза длиной модуля, и меньшим количеством контактов на плате (204 и 360 контактов у SO-DIMM DDR3 и DDR4 против 240 и 288 на платах тех же типов DIMM-памяти).
По остальным характеристикам - частоте, таймингам, объёму, модули SO-DIMM могут быть любыми, и ничем принципиальным от DIMM не отличаются.

DIMM

DIMM - оперативная память для полноразмерных компьютеров.
Тип памяти, который вы выберете, в первую очередь должен быть совместим с разъёмом на материнской плате. ОЗУ для компьютера делится на 4 типа – DDR , DDR2 , DDR3 и DDR4 .

Память типа DDR появилась в 2001 году, и имела 184 контакта. Напряжение питания составляло от 2.2 до 2.4 В. Частота работы – 400МГц . До сих пор встречается в продаже, правда, выбор невелик. На сегодняшний день формат устарел, - подойдёт, только если вы не хотите обновлять систему полностью, а в старой материнской плате разъёмы только под DDR.

Стандарт DDR2 вышел уже в 2003-ем, получил 240 контактов, которые увеличили число потоков, прилично ускорив шину передачи данных процессору. Частота работы DDR2 могла составлять до 800 МГц (в отдельных случаях – до 1066 МГц), а напряжение питания от 1.8 до 2.1 В – чуть меньше, чем у DDR. Следовательно, понизились энергопотребление и тепловыделение памяти.
Отличия DDR2 от DDR:

· 240 контактов против 120
· Новый слот, несовместимый с DDR
· Меньшее энергопотребление
· Улучшенная конструкция, лучшее охлаждение
· Выше максимальная рабочая частота

Также, как и DDR, устаревший тип памяти - сейчас подойдёт разве что под старые материнские платы, в остальных случаях покупать нет смысла, так как новые DDR3 и DDR4 быстрее.

В 2007 году ОЗУ обновились типом DDR3 , который до сих пор массово распространён. Остались всё те же 240 контактов, но слот подключения для DDR3 стал другим – совместимости с DDR2 нет. Частота работы модулей в среднем от 1333 до 1866 МГц . Встречаются также модули с частотой вплоть до 2800 МГц .
DDR3 отличается от DDR2:

· Слоты DDR2 и DDR3 несовместимы.
· Тактовая частота работы DDR3 выше в 2 раза – 1600 МГц против 800 МГц у DDR2.
· Отличается сниженным напряжением питания – порядка 1.5В, и меньшим энергопотреблением (в версии DDR3L это значение в среднем ещё ниже, около 1.35 В).
· Задержки (тайминги) DDR3 больше, чем у DDR2, но рабочая частота выше. В целом скорость работы DDR3 на 20-30% выше.

DDR3 - на сегодня хороший выбор. Во многих материнских платах в продаже разъёмы под память именно DDR3, и в связи с массовой популярностью этого типа, вряд ли он скоро исчезнет. Также он немного дешевле DDR4.

DDR4 – новый тип ОЗУ, разработанный только в 2012 году. Является эволюционным развитием предыдущих типов. Пропускная способность памяти снова повысилась, теперь достигая 25,6 Гб/с. Частота работы также поднялась – в среднем от 2133 МГц до 3600 МГц . Если же сравнивать новый тип с DDR3, который продержался на рынке целых 8 лет и получил массовое распространение, то прирост производительности незначителен, к тому же далеко не все материнские платы и процессоры поддерживают новый тип.
Отличия DDR4:

· Несовместимость с предыдущими типами
· Пониженно напряжение питания – от 1.2 до 1.05 В, энергопотребление тоже снизилось
· Рабочая частота памяти до 3200 МГц (может достигать 4166 МГц в некоторых планках), при этом, конечно, выросшие пропорционально тайминги
· Может незначительно превосходить по скорости работы DDR3

Если у вас уже стоят планки DDR3, то торопиться менять их на DDR4 нет никакого смысла. Когда этот формат распространится массово, и все материнские платы уже будут поддерживать DDR4, переход на новый тип произойдёт сам собой с обновлением всей системы. Таким образом, можно подытожить, что DDR4 – скорее маркетинг, чем реально новый тип ОЗУ.

Какую частоту памяти выбрать?

Выбор частоты нужно начинать с проверки максимально поддерживаемых частот вашим процессором и материнской платой. Частоту выше поддерживаемой процессором имеет смысл брать только при разгоне процессора.

На сегодняшний день не стоит выбирать память с частотой ниже 1600 МГц. Вариант 1333 МГц допустим в случае DDR3, если это не завалявшиеся у продавца древние модули, которые явно будут медленнее новых.

Оптимальный вариант на сегодня - это память с интервалом частот от 1600 до 2400 МГц . Частота выше почти не имеет преимущества, но стоит гораздо дороже, и как правило является разогнанными модулями с поднятыми таймингами. Для примера, разница между модулями в 1600 и 2133 Мгц в ряде рабочих программ будет не более 5-8 %, в играх разница может быть ещё меньше. Частоты в 2133-2400 Мгц стоит брать, если вы занимаетесь кодированием видео/аудио, рендерингом.

Разница же между частотами в 2400 и 3600 Мгц обойдётся вам довольно дорого, при этом не прибавив ощутимо скорости.

Какой объём оперативной памяти брать?

Объём, который вам понадобится, зависит от типа работы, производимой на компьютере, от установленной операционной системы, от используемых программ. Также не стоит упускать из виду максимально поддерживаемый объём памяти вашей материнской платой.

Объём 2 ГБ - на сегодняшний день, может хватить разве что только для просмотра интернета. Больше половину будет съедать операционная система, оставшегося хватит на неторопливую работу нетребовательных программ.

Объём 4 ГБ
– подойдёт для компьютера средней руки, для домашнего пк-медиацентра. Хватит, чтобы смотреть фильмы, и даже поиграть в нетребовательные игры. Современные – увы, с потянет с трудом. (Станет лучшим выбором, если у вас 32-разрядная операционная система Windows, которая видит не больше 3 ГБ оперативной памяти)

Объём 8 ГБ (или комплект 2х4ГБ) – рекомендуемый объём на сегодня для полноценного ПК. Этого хватит для почти любых игр, для работы с любым требовательным к ресурсам софтом. Лучший выбор для универсального компьютера.

Объём 16 ГБ (или наборы 2х8ГБ , 4х4ГБ)- будет оправданным, если вы работаете с графикой, тяжёлыми средами программирования, или постоянно рендерите видео. Также отлично подойдёт для ведения онлайн-стримов – здесь с 8 ГБ могут быть подвисания, особенно при высоком качестве видео-трансляции. Некоторые игры в высоких разрешениях и с HD-текстурами могут лучше себя вести с 16 ГБ оперативной памяти на борту.

Объём 32 ГБ (набор 2х16ГБ , или 4х8ГБ)– пока очень спорный выбор, пригодится для каких-то совсем экстремальных рабочих задач. Лучше будет потратить деньги на другие комплектующие компьютера, это сильнее отразится на его быстродействии.

Режимы работы: лучше 1 планка памяти или 2?

ОЗУ может работать в одно-канальном, двух-, трёх- и четырёх-канальном режимах. Однозначно, если на вашей материнской плате есть достаточное количество слотов, то лучше взять вместо одной планки памяти несколько одинаковых меньшего объёма. Скорость доступа к ним вырастет от 2 до 4 раз.

Чтобы память работала в двухканальном режиме, нужно устанавливать планки в слоты одного цвета на материнской плате. Как правило, цвет повторяется через разъём. Важно при этом, чтобы частота памяти в двух планках была одинаковой.

- Single chanell Mode – одноканальный режим работы. Включается, когда установлена одна планка памяти, или разные модули, работающие на разной частоте. В итоге память работает на частоте самой медленной планки.
- Dual Mode – двухканальный режим. Работает только с модулями памяти одинаковой частоты, увеличивает скорость работы в 2 раза. Производители выпускают специально для этого комплекты модулей памяти , в которых может быть 2 или 4 одинаковых планки.
- Triple Mode – работает по тому же принципу, что и двух-канальный. На практике не всегда быстрее.
- Quad Mode - четырёх-канальный режим, который работает по принципу двухканального, соответственно увеличивая скорость работы в 4 раза. Используется, там где нужна исключительно высокая скорость - например, в серверах.

- Flex Mode – более гибкий вариант двухканального режима работы, когда планки разного объёма, а одинаковая только частота. При этом в двухканальном режиме будут использоваться одинаковые объёмы модулей, а оставшийся объём будет функционировать в одноканальном.

Нужен ли памяти радиатор?

Сейчас уже давно не те времена, когда при напряжении в 2 В достигалась частота работы в 1600 МГц, и в результате выделялось много тепла, которое надо было как-то отводить. Тогда радиатор мог быть критерием выживаемости разогнанного модуля.

В настоящее время же энергопотребление памяти сильно снизилось, и радиатор на модуле может быть оправдан с технической точки зрения, только если вы увлекаетесь оверклокингом, и модуль будет работать у вас на запредельных для него частотах. Во всех остальных случаях радиаторы можно оправдать, разве что, красивым дизайном.

В случае, если радиатор массивный, и заметно увеличивает высоту планки памяти – это уже существенный минус, поскольку он может помешать вам поставить в систему процессорный суперкулер. Существуют, кстати, специальные низкопрофильные модули памяти , предназначенные для установки в компактные корпуса. Они несколько дороже модулей обычного размера.



Что такое тайминги?

Тайминги , или латентность (latency) – одна из самых важных характеристик оперативной памяти, определяющих её быстродействие. Обрисуем общий смысл этого параметра.

Упрощённо оперативную память можно представить, как двумерную таблицу, в которой каждая ячейка несёт информацию. Доступ к ячейкам происходит по указанию номера столбца и строки, и указание это происходит при помощи стробирующего импульса доступа к строке RAS (Row Access Strobe ) и стробирующего импульса доступа к столбцу CAS (Acess Strobe ) путём изменения напряжения. Таким образом, за каждый такт работы происходят обращения RAS и CAS , и между этими обращениями и командами записи/чтения существуют определённые задержки, которые и называются таймингами.

В описании модуля оперативной памяти можно увидеть пять таймингов, которые для удобства записываются последовательностью цифр через дефис, например 8-9-9-20-27 .

· tRCD (time of RAS to CAS Delay) - тайминг, который определяет задержку от импульса RAS до CAS
· CL (timе of CAS Latency) - тайминг, определяющий задержку между командой о записи/чтении и импульсом CAS
· tRP (timе of Row Precharge) - тайминг, определяющий задержку при переходах от одной строки к следующей
· tRAS (time of Active to Precharge Delay) - тайминг, который определяет задержку между активацией строки и окончанием работы с ней; считается основным значением
· Command rate – определяет задержку между командой выбора отдельного чипа на модуле до команды активации строки; этот тайминг указывают не всегда.

Если говорить ещё проще, то о таймингах важно знать только одно – чем их значения меньше, тем лучше. При этом планки могут иметь одинаковую частоту работы, но разные тайминги, и модуль с меньшими значениями всегда будет быстрее. Так что стоит выбирать минимальные тайминги, для DDR4 ориентиром средних значений будут тайминги 15-15-15-36, для DDR3 - 10-10-10-30. Также стоит помнить, что тайминги связаны с частотой памяти, так что при разгоне скорее всего придётся поднять и тайминги, и наоборот - можно вручную опустить частоту, снизив при этом тайминги. Выгоднее всего обращать внимание на совокупность этих параметров, выбирая скорее баланс, и не гнаться за крайними значениями параметров.

Как определиться с бюджетом?

Располагая большей суммой, вы сможете позволить себе больший объём оперативной памяти. Основное отличие дешёвых и дорогих модулей будет в таймингах, частоте работы, и в бренде – известные, разрекламированные могут стоить немного дороже noname модулей непонятного производителя.
Кроме того, дополнительных денег стоит радиатор, установленный на модули. Далеко не всем планкам он нужен, но производители сейчас на них не скупятся.

Цена будет также зависеть от таймингов, чем они ниже- тем выше скорость, и соответственно, цена.

Итак, имея до 2000 рублей , вы сможете приобрести модуль памяти объёмом 4 ГБ, или 2 модуля по 2 ГБ, что предпочтительнее. Выбирайте в зависимости от того, что позволяет конфигурация вашего пк. Модули типа DDR3 обойдутся почти вдвое дешевле чем DDR4. При таком бюджете разумнее брать именно DDR3.

В группу до 4000 рублей входят модули объёмом в 8 ГБ, а также наборы 2х4 ГБ. Это оптимальный выбор для любых задач, кроме профессиональной работы с видео, и в любых других тяжёлых средах.

В сумму до 8000 рублей обойдётся объём памяти в 16 ГБ. Рекомендуется для профессиональных целей, или для заядлых геймеров - хватит даже про запас, в ожидании новых требовательных игр.

Если не проблема потратить до 13000 рублей , то самым лучшим выбором будет вложить их в набор из 4 планок по 4 ГБ. За эти деньги можно выбрать даже радиаторы покрасивее, возможно для последующего разгона.

Больше 16 ГБ без цели работы в профессиональных тяжёлых средах (да и то не во всех) брать не советую, но если очень хочется, то за сумму от 13000 рублей вы сможете залезть на Олимп, приобретя комплект на 32 ГБ или даже 64 ГБ . Правда, смысла для рядового пользователя или геймера в этом будет не много – лучше потратить средства, скажем, на флагманскую видеокарту.