Минимальный клон Arduino за $3 на ATmega8A с модифицированным bootloader'ом. Системный интегратор Самодельный ардуино на atmega8


Давайте же приступим!

Шаг 1.Введение.


Вопросы,как и что сделать,а вообще зачем оно мне?

После серфа по тоннам информации об Arduino…от изготовления светодиодного кубика,до создания «Умного дома»,до изготовления летающих дронов…
вы,как и я,лихорадочно начали искать более-менее приемлимую инфу об изготовлении этой всемогущей платы.
«Черт возьми,хочу такую!» или «Я хочу сделать это.Прямо сейчас.»И в голове крутятся все возможные применения этого устройства,
руки сами начинают искать детали для платы,заходите в интернет,а там:
АРДУИНО.Всего за 25$.
И все.
Все комбинации выпали из головы.
Безнадега.
Не знаете,как жить дальше.
И тут вы натыкаетесь на этот сайт!
Вы спасены!
Ведь именно сейчас мы с вами соберем ARDUINO-совместимую плату за 15 минут и всего за примерно 300 рублей!

Шаг 2.Приобретите это немедля!


Вам необходимы эти компоненты:
-Макетная плата
-ATMega 328(примечание переводчика: можно использовать также ATMega 8,168)
-Готовая плата Arduino(*и снова переводчик-вместо ардуины можно использовать любой программатор,хоть «5 проводков»)
-1 резонатор на 16мГц
-3 резистора на 100Ом
-1 резистор на 10кОм
-2 конденсатора на 22pF
-3 светодиода(красный,желтый и зеленый)
-1 батарея типа»Крона»(9 вольт) с ответной частью
-USB-кабель
-1 стабилизатор напряжения «КРЕНка»
-Компьютер,ноутбук с установленной Arduino IDE.
И все.

Шаг 3.Начало сборки.


Возьмите макетку и закрепите микроконтроллер так,чтобы его ножки не были замкнуты(он должен стоять над «канавкой»)

Шаг 4.Подключение КРЕНки.

Поместите КРЕНку на макетку рядом с МК.
Распиновка КРЕНки:
-VCC(питание снаружи)
-GND(Земля.Общий контакт)
-Output(Выход)
Подсоедините черный провод к GND.Соедините его другой конец с шиной «GND» на макетке.
VCC подключите к шине питания+ на макетке.
И Output киньте туда,где будет питание чипа.

Шаг 5.Проводим питание к МК.


Хорошенько изучите распиновку АТМеги.
Соедините Output КРЕНки и GND макетки соответственно с Output(7 и 20 пин) и GND(8 и 22 пин) МК.

Шаг 6.Добавим точности.



Подключите конденсатор на 22pF между GND и 9 пином АТМеги.
И второй конденсатор между 10 пином АТМеги и,опять же,землей.
Добавьте резистор на 10кОм между 5v и RESET(1 пин).

Шаг 7.Добавляем светодиоды.

Воткните провод в любое место платы.
Подключите резистор 100Ом к одному из концов провода(см.картинку)
Длинную ножку диода (+) желтого диода подсоедините к другому концу резистора.
Короткую ножку(-) подключите к земле.
Повторите для красного и зеленого диодов.

Шаг 8.Подключаем все это к ARDUINO.
Далеко зашли мы,однако!

Подключите желтый диод к 9 пину Arduino.
Желтый диод отображает работу программатора.
Подключите красный диод к 8 пину Ардуины.
Он загорается,если что-то пошло не так.
И зеленый диод подключите к 7 пину.
Он показывает статус заливки bootloader’а.
Подсоедините 4 провода(на картинке-3 желтых и зеленый) к пинам АТМеги на макетке(см.рисунок).
А затем эти провода к 10-13 пинам Ардуино.
Не забудьте соединить 5 и GND Ардуины и макетки!

Шаг 9.Программирование.
Фух,добрались и до заливки бутлоадера.
Как,спросите вы?
АК вот так!
1)Запустите Arduino IDE.
2)Выберите Файл-Примеры-Arduino ISP.
3)Скомпилируйте скетч и залейте его в Ардуину.
После заливки скетча Вы увидите,что желтый диод начал мигать.
Теперь добавьте резистор на 100 Ом между землей и Reset Ардуины.

Шаг 10.Собственно заливка загрузчика.


В Arduino IDE выберите:
Tools-Board-Arduino Duemilkanove with AtMega 328(* Если вы используете не АТМегу 328,найдите в списке модель с тем контроллером,который установлен у вас)
Tools-Programmer-Arduino as ISP.
И снова в меню Tools.Зайдите и нажмитье «Burn Bootloader»
Прошивка начнется(займет около минуты)
На экране появится надпеись «Done Burning Bootloader»

Если что-то пойдет не так,загорится красный диод,то не получилось.Обращайтесь в личку или на [email protected] .
Вуаля!У вас есть свой Ардуино!
Счастливой работы!

Сразу признаюсь, что заголовок призван привлекать внимание — конечно, за $3 полноценную Arduino-плату не собрать, но минимальное решение вполне можно.

Платы проекта Arduino идеальны для макетирования и сборки прототипов, а для законченных устройств хотелось найти что-то более дешевое и доступное. В этой заметке будет описана минимальная Arduino-совместимая конструкция.

В качестве отправной точки использовались статьи Minimal Arduino with ATmega8 (внимание : в этой статье есть ошибка, значения fuse-битов неверны) и страница об ArduinoISP из официальной wiki . К сожалению, ни одна из этих статей в своё время не ответила на все мои вопросы, кроме того появилось желание немного «подкрутить» стандартный bootloader, но об этом ниже.

Поддержка новых плат и IDE
(дополнение от 01.05.2012 , файлы исправлены 27.05.2012 )

Действия, описанные в статье, проверялись на Arduino IDE 0023 и клоне Arduino Duemilanove . С момента написания статьи были выпущены новые платы и обновлена среда. Судя по комментариям пользователей к этой записи, всё работало если в качестве платы-программатора использовались Arduino Uno и Arduino Mega 2560 . Для новой версии среды Arduino IDE 1.0.1 я подготовил обновлённый архив (доступен в конце статьи), обновление необходимо из-за незначительных изменений в формате файла boards.txt

Минимальная Arduino-конструкция за $3.5
(дополнение от 02.05.2012)

Этот способ является альтернативным описанному в статье ниже!
В комплекте Arduino IDE 1.0 поставляется новый бутлоадер Optiboot , который занимает всего 512 байт (бутлоадер, описанный в этой статье в два раза больше — 1 Кб) и работает на высоком бодрейте — 115200 (в статье ниже — 38400). Для работы этого бутлоадера дополнительно к описанным в статье компонентам нужен внешний кварц на 16МГц и два конденсатора на 22пФ его обвязки (этим объясняется увеличение стоимости на $0,5:)). В комплекте с Arduino IDE 1.0 есть уже скомпилированная версия для ATmega8, достаточно только добавить в boards.txt следующее и прошить бутлоадер:
############################################################## atmega8optiboot.name=ATmega8 (optiboot, 16Mhz XTAL) atmega8optiboot.upload.protocol=arduino atmega8optiboot.upload.maximum_size=7680 atmega8optiboot.upload.speed=115200 atmega8optiboot.bootloader.low_fuses=0xBF atmega8optiboot.bootloader.high_fuses=0xCC atmega8optiboot.bootloader.path=optiboot atmega8optiboot.bootloader.file=optiboot_atmega8.hex atmega8optiboot.bootloader.unlock_bits=0x3F atmega8optiboot.bootloader.lock_bits=0x0F atmega8optiboot.build.mcu=atmega8 atmega8optiboot.build.f_cpu=16000000L atmega8optiboot.build.core=arduino:arduino atmega8optiboot.build.variant=arduino:standard В версии файлов к статье от 14.07.2012 настройки для этого способа добавлены в состав архива , поэтому править главный boards.txt больше нет необходимости.



Что будет нужно:
  • Arduino-совместимая плата (я использовал китайский клон Arduino Duemilanove , на момент написания заметки новая Arduino Uno не поддерживается скетчем ArduinoISP. Обновление : по сообщениям пользователей ArduinoISP из Arduino 023 поддерживает Arduino Uno). Плата будет использоваться в качестве программатора для прошивки bootloader"а и в дальнейшем как USB-TTL конвертер;
  • Arduino IDE версии 0022 (последняя на момент написаний статьи);
  • Микроконтроллер в корпусе DIP-28 ATmega8 или ATmega8A ( , версия с буквой «A» имеет более низкое энергопотребление). Для тактирования будет использоваться внутренний RC-осциллятор с максимальнй для него частотой 8Mhz.
  • Провода для соединения всего этого на время прошивки bootloader"a (я использовал беспаечную макетную плату и набор зачищенных проводов к ней)
Опциональные компоненты:
  • 1 светодиод и токоограничительный резистор на 220-500 Ом (подключается к пину №19 (PB5), это тот же выход Digital pin 13, к которому на большинстве Arduino-совместимых плат подключен светодиод L );
  • 1 резистор на 10 кОм (подключается от RESET"а микроконтроллера к +5V для предотвращения произвольного сброса);
  • 1 конденсатор 100 нФ (подключается между плюсом и минусом питания для фильтрации помех).

Выбор именно ATmega8(A) объясняется очень просто: в местных магазинах радиотоваров не было никаких других контроллеров, поддерживаемых средой Arduino. С одной стороны, это сильно ограничило меня в объёме кода, с другой — именно благодаря тому, что код моего проекта на Arduino не поместился в память контроллера, я был вынужден разобраться с WinAVR и переписать проект под AVR-GCC. Времени на вспоминание C и чтение datasheet"ов ушло довольно много, но код получился раз в пять компактнее и, пожалуй, к программированию в среде Arduino я врядли вернусь:).

Подготовка IDE

Скачайте архив с настройками и bootloader"ом и разархивировать его в папку Sketchbook (путь можно посмотреть в пункте меню File -> Preferences Arduino IDE). После перезапуска Arduino IDE в меню Tools -> Board должен появиться новый пункт .


В архиве находится следующее:
  • Модифицированный bootloader для ATmega8 от проекта Arduino. Оригинальный исходный код можно найти в папке hardware\arduino\bootloaders\atmega8 . Этот bootloader занимает всего 1 Кб (512 слов) в памяти контроллера, в отличие от более нового hardware\arduino\bootloaders\atmega , который используется для плат на основе ATmega168 и ATmega328. Отличия от оригинальной версии заключаются в следующем: уменьшено время ожидания скетча при сбросе микроконтроллера, скорость загрузки поднята до 38400;
  • Файл boards.txt , в котором описана конфигурация нового типа платы (с более высокой скоростью загрузки и fuse-битами для работы от внутреннего RC-осциллятора на частоте 8Mhz).
Превращение Arduino-совместимой платы в программатор

В Arduino нужно загрузить скетч ArduinoISP (File -> Examples -> ArduinoISP ), после этого Arduino может играть роль ISP-программатора практически для любых AVR чипов (я проверял на ATmega8 и ATtiny45).


Подключение «программатора» к контроллеру


Схема продублирована в тексте скетча ArduinoISP:

// this sketch turns the Arduino into a AVRISP // using the following pins: // 10: slave reset // 11: MOSI // 12: MISO // 13: SCK
Обновление от 30.10.2011: Для Arduino Mega назначение выводов другое:

// 50 (MISO) // 51 (MOSI) // 52 (SCK) // 53 (slave reset)
Дополнительно можно подключить светодиоды, которые будут перемигиваться при прошивке (их наличие или отсутствие на функциональность не влияет):

// Put an LED (with resistor) on the following pins: // 9: Heartbeat - shows the programmer is running // 8: Error - Lights up if something goes wrong (use red if that makes sense) // 7: Programming - In communication with the slave
Проверка подключения

Arduino использует для компиляции скетчей avr-gcc , штатной утилитой для прошивки в котором является программа avrdude (расположен в этой папке: \hardware\tools\avr\bin\ ). Прежде чем предпринимать что-либо дальше необходимо проверить, правильно ли мы подключили контроллер с помощью следующей команды:


avrdude -v -patmega8 -cstk500v1 -PCOM10 -b19200
Назначение параметров:
  • -v — выводить больше информации
  • -patmega8 — тип контроллера (для ATmega8A нужно всё равно указывать atmega8)
  • -cstk500v1 — тип программатора (ArduinoISP эмулирует STK500)
  • -PCOM10 — номер COM-порта (можно посмотреть в меню Tools -> Serial Port в Arduino IDE)
  • -b19200 — скорость обмена, скетч ArduinoISP работат на этой скорости
Если всё подключено правильно, контроллер должен радостно ответить примерно следующее:

AVR device initialized and ready to accept instructions Reading | ################################################## | 100% 0.05s avrdude: Device signature = 0x1e9307 avrdude: safemode: lfuse reads as E1 avrdude: safemode: hfuse reads as D9 avrdude: safemode: lfuse reads as E1 avrdude: safemode: hfuse reads as D9 avrdude: safemode: Fuses OK avrdude done. Thank you.

Важно! Если всё подключено правильно, а всё равно не работает, возможно, проблема в версии avrdude . На одной из моих тестовых плат возникла следующая ситуация: avrdude из ArduinoIDE плату-«программатор» с ArduinoISP не видит, а avrdude из WinAVR работает отлично. Решение этого непонятного бага довольно простое — на время прошивки bootloader"a заменить файл \hardware\tools\avr\bin\avrdude.exe на более новую версию из WinAVR. Bootloader может прошиться не с первого раза, а со второго — жалоб о таком поведении на форумах тоже хватает. После прошивки bootloader"а можно восстановить оригинальную версию avrdude .

Прошивка bootloader"a

Самая простая часть. Нужно запустить Arduino IDE, выбрать в пункте меню Tools -> Board следующую плату: ATmega8(A) (8MHz int. RC osc, short bootloader delay, 38400 baud rate) . Здесь указывается целевая плата, поэтому нужно выбрать именно этот пункт, а не модель Arduino-совместимой-платы, которая работает ISP-программатором.

После этого нужно запустить процесс прошивки bootloader"а командой Tools -> Burn Bootloader -> w/ Arduino as ISP . Процесс прошивки занимает 1–2 минуты.


Что же получилось в итоге

После прошивки bootloader"а и установки fuse-битов новая ATmega8A будет работать от встроенного RC-осциллятора на частоте 8Mhz. Программы в флеш-памяти контроллера ещё нет, поэтому bootloader будет запускаться снова и снова, о чём будет свидетельствовать постоянное помигивание светодиода L.


Bootloader ждет команд по UART около половины секунды после сброса микроконтроллера. Для заливки прошивки в контроллер можно использовать:

  • USB-TTL конвертер (его можно собрать или купить);
  • Arduino-совместимая плата со снятым контроллером.
Зачем нужен bootloader, если есть ArduinoISP?
  • использование bootloader"a обеспечивает совместимость и с Arduino IDE, и с AVR Studio;
  • меньше проводов для подключения (вместо линий ISP только UART). При этом UART часто используется для отладки, поэтому его все равно приходится подключать.
Скачать

Общие сведения

Этот вариант Arduino-контроллера, если уж не самый простой, то уж наверняка самый доступный для самостоятельного изготовления. В основе - уже ставшая классической схема Arduino на контроллере ATMega8.

Всего разработано два варианта:

  • Модульный
  • Одноплатный

Модульный вариант

Этот вариант контроллера состит из трех плат:

Одноплатный вариант

Все тоже самое, только на одной плате:

Плата выполнена из одностороннего фольгированного текстолита и может быть повторена в домашних условиях с использованием, наприрмер, ЛУТ-технологии. Размеры платы: 95x62

Программирование микроконтроллера

После сборки платы - необходимо "прошить" контроллер, загрузить в него "bootloader" - загрузчик. Для этого потребуется программатор. Берем чистый контроллер типа ATMega8, устанавливаем его в программатор, подключаем к компьютеру. Я использовал программатор Программатор AVR ISP mkII c адаптером ATMega8-48-88-168 . Программируем с помощью Arduino IDE, она сама выставит необходимые fuse bits. Последовательность такая:

1. Выбор программатора (Сервис > Программатор > AVRISP mkII). Если этот программатор используется впервые - необходимо установить драйвер AVRISP-MKII-libusb-drv.zip . Если используется не AVRISP mkII, а другой программатор, то из списка нужно выбрать нужный.

2. Выбор платы для микроконтроллера (Сервис > Плата > Arduino NG or older w/ ATmega8). Если используется не ATmega8, а другой микроконтроллер, то и платку нужно выбирать соответствующую ему.

3. Запись bootloader (Сервис > Записать загрузчик).

4. Устанавливаем контроллер на плату, и все, Arduino готова к работе.

Arduino своими руками

Ну вот и настало время освоить платформу для duino самостоятельно. Для начала разберемся, что нам может потребоваться. Для начал было бы не плохо определиться, на базе чего мы будем делать наш экземпляр отладочной платы. Чтобы упростить изначальную задачу, я предлагаю использовать USB-(UART)TTL адаптер для загрузки скетчей. Это упростит нам жизнь в разы. лично я буду использовать дешевенький адаптер, заказанный в ныне несуществующем интернет-магазине, но все также рабочий.

При построении нашей Duino будем стараться использовать минимальное количество элементов. По мере освоения будем добавлять необходимые компоненты.

Для ознакомления найдем схемы различных платформ на официальном сайте:

На мой взгляд схемы хорошие, но неплохо было бы посмотреть уже проверенные реализации "самоделок", мне очень понравились 3 варианта:

Соорудим минимальную обвязку нашему устройству.На первом этапе деталей необходимо минимум:

Собственно сам МК atmega328P (в моем случае, хотя может использоваться и 168 и 8)

Кварц 16 MHz

Конденсатор 22pF x 2шт.

Резистор 10k

Кнопка сброса (любая, кстати не обязательный элемент)

Вот в принципе и все, что минимально необходимо для работы микроконтроллера. Я предлагаю все наши работы иллюстрировать и проектировать в очень не плохой программке Fritzing:

Ну вот, давайте разберемся, зачем нужны данные элементы. Кнопка позволяет перезапустить микроконтроллер, резистор R1 является подтягивающим резистором для кнопки. Кварц, C1 и C2 являются внешним тактовым генератором для контроллера.


Это необходимая и достаточная обвязка, но лично я настоятельно Вам рекомендую установить керамический конденсатор 100nF параллельно основному питанию микросхемы.

Ну вот и готова наша минимальная Duino. Для того, чтобы удобнее было использовать данный отладочный инструмент, я предлагаю наклеивать на корпус подсказку с распиновкой "атмеги". Мой вариант реализован в Corel Draw:

Для начала соберем схему нашей Duino на беспаечной макетной плате, вот что получилось у меня:

Для загрузки скетчей мы будем использовать USB - TTL адаптер, на фото мой уже изрядно потрепавшийся адаптер на базе микросхемы CP2102:

Но перед загрузкой скетчей необходимо залить бутлоадер в МК, иначе, он "не поймет", что мы от него хотим. Есть масса способов, но мы будем использовать простейший. При помощи замечательного программатора USBasp:

Для начала подключим нашу Duino к программатору, это очень просто, достаточно соединить контакты программатора с Duino:

GND - масса (22 нога)

MOSI - MOSI (d11)

5V - питание "+" (7 нога)

Затем Arduino IDE -> Сервис -> "Записать загрузчик":

В процессе записи загрузчика придется подождать около 2 минут. После этого нам могут выпасть разнообразные "warning", типа "can not set SCK period" - не пугаемся и идем дальше.

Ну чтож, вот мы и готовы записать тестовый скетч "Blink" в наш новоиспеченный Duino, но есть один момент, и на нем я хотел бы остановиться. Как мы уже говорили для записи скетчей используется последовательный порт, но в "обычной" жизни МК это цифровые порты 0 и 1. Все очень просто, мы уже залили бутлоадер, он инициализирует запись новой прошивки при включении в течении нескольких секунд, после этого Duino начинает выполнять программу, которая записана у нее в памяти.

Чтобы перевести Duino в режим "приема", необходимо перезагрузить МК, для этого мы сделали специальную кнопку, но нажать ее нужно строго в определенный момент, это совсем не подходит для нас. К счастью на переходниках есть специальный вывод "RST", который достаточно подключить к 1 ноге МК, чтобы автоматически перезагружать Duino перед загрузкой скетча. Подключение очень простое, (переходник - Duino):

GND - масса (22 нога)

RXD - подключить к TXD (3 нога)

TXD - подключить к КXD (2 нога)

5V - питание "+" (7 нога)

Как Вы заметили контакты приема/передачи подключаются перекрестно. И все бы хорошо, но есть одно "но": существует огромное множество переходников, а для автоматической перезагрузки МК необходимо внедрить конденсатор на 100pF в разрыв цепи RST - перезагрузка (1 нога). В некоторых адаптерах он есть, а в некоторых - увы нет. Тут нужно только проверять, в моем экземпляре встроенного конденсатора не оказалось. В итоге схема немного "усложнилась":

Ну что же, теперь можно загрузить скетч в памяти Duino и попробовать провести несколько экспериментов =) (на фото добавлены светодиоды - индикаторы загрузки скетча):

EGYDuino – это клон Arduino, который можно изготовить самостоятельно, на односторонней печатной плате. Это простое и дешевое решение, которое можно изготовить в домашних условиях, причем на 100% совместимое с Arduino.

Описание

Микроконтроллер ATmega8 отвечает за последовательное подключение по USB. Он может быть запрограммирован с помощью . AVR-CDC создает виртуальный СОМ-порт на ПК после подключения устройства и устанавливает соответствующий драйвер. Микроконтроллер ATmega 8,168 следует запрограммировать с помощью загрузчика ArduinoNG boatloader . Данную операцию можно выполнить с использованием еще одной платы Arduino (выберите ISP программатор) и среды разработки Arduino IDE, или отдельного программатора (USB, последовательного или параллельного), например, USBasp с надлежащим программным обеспечением. Также вы можете использовать загрузчик Arduino Duemilanove для ATmega 168 или 328.

Плата имеет следующие характеристики:

Использует микроконтроллер ATmega8 как интерфейсную ИС
- USB-соединение с ПК
- Стандартная кнопка RESET
- 100% совместимость по выводам с Arduino
- Регулятор 5В
- Выход 3.3В
- Совместимый размер и конструкция
- Все компоненты вставляются в сквозные монтажные отверстия на плате
- USB или DC выключатель питания
- Светодиод для вывода PIN13 с перемычкой
- Светодиод питания
- ICSP-разъем
- Легко изготовляемая
- Микроконтроллеры ATmega8,168,328 с использованием загрузчика arduinoNG
- Стандартное гнездо DC питания

Плата EGYDuino может запитываться через USB-коннектор, или стабилизатор напряжения внешнего адаптера.

Схема

Полная схема устройства показана ниже

Печатная плата

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Микроконтроллер ATmega8-P 1 В блокнот
IC2 МК AVR 8-бит

ATmega328

1 В блокнот
IC3 Линейный регулятор

LM7805

1 В блокнот
D1 Выпрямительный диод

1N4001

1 В блокнот
D2, D3 Стабилитрон 3.6 В 2 В блокнот
С1, С2, С5, С6 Конденсатор 22 пФ 4 В блокнот
С3 Конденсатор 1000 пФ 1 В блокнот
С4, С7, С10 Конденсатор 0.1 мкФ 3 В блокнот
С8, С9 Электролитический конденсатор 100 мкФ 2 В блокнот
R1, R2 Резистор

68 Ом

2 В блокнот
R3 Резистор

1.5 кОм

1 В блокнот
R4, R6 Резистор

10 кОм

2 В блокнот
R5 Резистор

1 кОм

1 В блокнот
R7 Резистор

470 Ом

1 В блокнот
Q1, Q2 Кварцевый резонатор 16 МГц 2 В блокнот
LED1 Светодиод Красный 1