Аппроксимация опытных данных. Метод наименьших квадратов. Линейный парный регрессионный анализ Аппроксимировать функцию методом наименьших квадратов

Метод наименьших квадратов

На заключительном уроке темы мы познакомимся с наиболее известным приложением ФНП , которое находит самое широкое применение в различных областях науки и практической деятельности. Это может быть физика, химия, биология, экономика, социология, психология и так далее, так далее. Волею судьбы мне часто приходится иметь дело с экономикой, и поэтому сегодня я оформлю вам путёвку в удивительную страну под названием Эконометрика =) …Как это не хотите?! Там очень хорошо – нужно только решиться! …Но вот то, что вы, наверное, определённо хотите – так это научиться решать задачи методом наименьших квадратов . И особо прилежные читатели научатся решать их не только безошибочно, но ещё и ОЧЕНЬ БЫСТРО;-) Но сначала общая постановка задачи + сопутствующий пример:

Пусть в некоторой предметной области исследуются показатели , которые имеют количественное выражение. При этом есть все основания полагать, что показатель зависит от показателя . Это полагание может быть как научной гипотезой, так и основываться на элементарном здравом смысле. Оставим, однако, науку в сторонке и исследуем более аппетитные области – а именно, продовольственные магазины. Обозначим через:

– торговую площадь продовольственного магазина, кв.м.,
– годовой товарооборот продовольственного магазина, млн. руб.

Совершенно понятно, что чем больше площадь магазина, тем в большинстве случаев будет больше его товарооборот.

Предположим, что после проведения наблюдений/опытов/подсчётов/танцев с бубном в нашем распоряжении оказываются числовые данные:

С гастрономами, думаю, всё понятно: – это площадь 1-го магазина, – его годовой товарооборот, – площадь 2-го магазина, – его годовой товарооборот и т.д. Кстати, совсем не обязательно иметь доступ к секретным материалам – довольно точную оценку товарооборота можно получить средствами математической статистики . Впрочем, не отвлекаемся, курс коммерческого шпионажа – он уже платный =)

Табличные данные также можно записать в виде точек и изобразить в привычной для нас декартовой системе .

Ответим на важный вопрос: сколько точек нужно для качественного исследования?

Чем больше, тем лучше. Минимально допустимый набор состоит из 5-6 точек. Кроме того, при небольшом количестве данных в выборку нельзя включать «аномальные» результаты. Так, например, небольшой элитный магазин может выручать на порядки больше «своих коллег», искажая тем самым общую закономерность, которую и требуется найти!



Если совсем просто – нам нужно подобрать функцию , график которой проходит как можно ближе к точкам . Такую функцию называют аппроксимирующей (аппроксимация – приближение) или теоретической функцией . Вообще говоря, тут сразу появляется очевидный «претендент» – многочлен высокой степени, график которого проходит через ВСЕ точки. Но этот вариант сложен, а зачастую и просто некорректен (т.к. график будет всё время «петлять» и плохо отражать главную тенденцию) .

Таким образом, разыскиваемая функция должна быть достаточно простА и в то же время отражать зависимость адекватно. Как вы догадываетесь, один из методов нахождения таких функций и называется методом наименьших квадратов . Сначала разберём его суть в общем виде. Пусть некоторая функция приближает экспериментальные данные :


Как оценить точность данного приближения? Вычислим и разности (отклонения) между экспериментальными и функциональными значениями (изучаем чертёж) . Первая мысль, которая приходит в голову – это оценить, насколько великА сумма , но проблема состоит в том, что разности могут быть и отрицательны (например, ) и отклонения в результате такого суммирования будут взаимоуничтожаться. Поэтому в качестве оценки точности приближения напрашивается принять сумму модулей отклонений:

или в свёрнутом виде: (вдруг кто не знает: – это значок суммы, а – вспомогательная переменная-«счётчик», которая принимает значения от 1 до ) .

Приближая экспериментальные точки различными функциями, мы будет получать разные значения , и очевидно, где эта сумма меньше – та функция и точнее.

Такой метод существует и называется он методом наименьших модулей . Однако на практике получил гораздо бОльшее распространение метод наименьших квадратов , в котором возможные отрицательные значения ликвидируются не модулем, а возведением отклонений в квадрат:



, после чего усилия направлены на подбор такой функции , чтобы сумма квадратов отклонений была как можно меньше. Собственно, отсюда и название метода.

И сейчас мы возвращаемся к другому важному моменту: как отмечалось выше, подбираемая функция должна быть достаточно простА – но ведь и таких функций тоже немало: линейная , гиперболическая , экспоненциальная , логарифмическая , квадратичная и т.д. И, конечно же, тут сразу бы хотелось «сократить поле деятельности». Какой класс функций выбрать для исследования? Примитивный, но эффективный приём:

– Проще всего изобразить точки на чертеже и проанализировать их расположение. Если они имеют тенденцию располагаться по прямой, то следует искать уравнение прямой с оптимальными значениями и . Иными словами, задача состоит в нахождении ТАКИХ коэффициентов – чтобы сумма квадратов отклонений была наименьшей.

Если же точки расположены, например, по гиперболе , то заведомо понятно, что линейная функция будет давать плохое приближение. В этом случае ищем наиболее «выгодные» коэффициенты для уравнения гиперболы – те, которые дают минимальную сумму квадратов .

А теперь обратите внимание, что в обоих случаях речь идёт о функции двух переменных , аргументами которой являются параметры разыскиваемых зависимостей :

И по существу нам требуется решить стандартную задачу – найти минимум функции двух переменных .

Вспомним про наш пример: предположим, что «магазинные» точки имеют тенденцию располагаться по прямой линии и есть все основания полагать наличие линейной зависимости товарооборота от торговой площади. Найдём ТАКИЕ коэффициенты «а» и «бэ», чтобы сумма квадратов отклонений была наименьшей. Всё как обычно – сначала частные производные 1-го порядка . Согласно правилу линейности дифференцировать можно прямо под значком суммы:

Если хотите использовать данную информацию для реферата или курсовика – буду очень благодарен за поставленную ссылку в списке источников, такие подробные выкладки найдёте мало где:

Составим стандартную систему:

Сокращаем каждое уравнение на «двойку» и, кроме того, «разваливаем» суммы:

Примечание : самостоятельно проанализируйте, почему «а» и «бэ» можно вынести за значок суммы. Кстати, формально это можно проделать и с суммой

Перепишем систему в «прикладном» виде:

после чего начинает прорисовываться алгоритм решения нашей задачи:

Координаты точек мы знаем? Знаем. Суммы найти можем? Легко. Составляем простейшуюсистему двух линейных уравнений с двумя неизвестными («а» и «бэ»). Систему решаем, например, методом Крамера , в результате чего получаем стационарную точку . Проверяя достаточное условие экстремума , можно убедиться, что в данной точке функция достигает именно минимума . Проверка сопряжена с дополнительными выкладками и поэтому оставим её за кадром (при необходимости недостающий кадр можно посмотреть здесь ) . Делаем окончательный вывод:

Функция наилучшим образом (по крайне мере, по сравнению с любой другой линейной функцией) приближает экспериментальные точки . Грубо говоря, её график проходит максимально близко к этим точкам. В традициях эконометрики полученную аппроксимирующую функцию также называют уравнением пАрной линейной регрессии .

Рассматриваемая задача имеет большое практическое значение. В ситуации с нашим примером, уравнение позволяет прогнозировать, какой товарооборот («игрек») будет у магазина при том или ином значении торговой площади (том или ином значении «икс») . Да, полученный прогноз будет лишь прогнозом, но во многих случаях он окажется достаточно точным.

Я разберу всего лишь одну задачу с «реальными» числами, поскольку никаких трудностей в ней нет – все вычисления на уровне школьной программы 7-8 класса. В 95 процентов случаев вам будет предложено отыскать как раз линейную функцию, но в самом конце статьи я покажу, что ничуть не сложнее отыскать уравнения оптимальной гиперболы, экспоненты и некоторых других функций.

По сути, осталось раздать обещанные плюшки – чтобы вы научились решать такие примеры не только безошибочно, но ещё и быстро. Внимательно изучаем стандарт:

Задача

В результате исследования взаимосвязи двух показателей, получены следующие пары чисел:

Методом наименьших квадратов найти линейную функцию, которая наилучшим образом приближает эмпирические (опытные) данные. Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции . Найти сумму квадратов отклонений между эмпирическими и теоретическими значениями. Выяснить, будет ли функция лучше (с точки зрения метода наименьших квадратов) приближать экспериментальные точки.

Заметьте, что «иксовые» значения – натуральные, и это имеет характерный содержательный смысл, о котором я расскажу чуть позже; но они, разумеется, могут быть и дробными. Кроме того, в зависимости от содержания той или иной задачи как «иксовые», так и «игрековые» значения полностью или частично могут быть отрицательными. Ну а у нас дана «безликая» задача, и мы начинаем её решение :

Коэффициенты оптимальной функции найдём как решение системы:

В целях более компактной записи переменную-«счётчик» можно опустить, поскольку и так понятно, что суммирование осуществляется от 1 до .

Расчёт нужных сумм удобнее оформить в табличном виде:


Вычисления можно провести на микрокалькуляторе, но гораздо лучше использовать Эксель – и быстрее, и без ошибок; смотрим короткий видеоролик:

Таким образом, получаем следующую систему :

Тут можно умножить второе уравнение на 3 и из 1-го уравнения почленно вычесть 2-е . Но это везение – на практике системы чаще не подарочны, и в таких случаях спасает метод Крамера :
, значит, система имеет единственное решение.

Выполним проверку. Понимаю, что не хочется, но зачем же пропускать ошибки там, где их можно стопроцентно не пропустить? Подставим найденное решение в левую часть каждого уравнения системы:

Получены правые части соответствующих уравнений, значит, система решена правильно.

Таким образом, искомая аппроксимирующая функция: – из всех линейных функций экспериментальные данные наилучшим образом приближает именно она.

В отличие от прямой зависимости товарооборота магазина от его площади, найденная зависимость является обратной (принцип «чем больше – тем меньше») , и этот факт сразу выявляется по отрицательному угловому коэффициенту . Функция сообщает нам о том, что с увеличение некоего показателя на 1 единицу значение зависимого показателя уменьшается в среднем на 0,65 единиц. Как говорится, чем выше цена на гречку, тем меньше её продано.

Для построения графика аппроксимирующей функции найдём два её значения:

и выполним чертёж:

Построенная прямая называется линией тренда (а именно – линией линейного тренда, т.е. в общем случае тренд – это не обязательно прямая линия) . Всем знакомо выражение «быть в тренде», и, думаю, что этот термин не нуждается в дополнительных комментариях.

Вычислим сумму квадратов отклонений между эмпирическими и теоретическими значениями. Геометрически – это сумма квадратов длин «малиновых» отрезков (два из которых настолько малы, что их даже не видно) .

Вычисления сведём в таблицу:


Их можно опять же провести вручную, на всякий случай приведу пример для 1-й точки:

но намного эффективнее поступить уже известным образом:

Еще раз повторим: в чём смысл полученного результата? Из всех линейных функций у функции показатель является наименьшим, то есть в своём семействе это наилучшее приближение. И здесь, кстати, не случаен заключительный вопрос задачи: а вдруг предложенная экспоненциальная функция будет лучше приближать экспериментальные точки?

Найдем соответствующую сумму квадратов отклонений – чтобы различать, я обозначу их буквой «эпсилон». Техника точно такая же:


И снова на всякий пожарный вычисления для 1-й точки:

В Экселе пользуемся стандартной функцией EXP (синтаксис можно посмотреть в экселевской Справке) .

Вывод : , значит, экспоненциальная функция приближает экспериментальные точки хуже, чем прямая .

Но тут следует отметить, что «хуже» – это ещё не значит , что плохо. Сейчас построил график этой экспоненциальной функции – и он тоже проходит близко к точкам – да так, что без аналитического исследования и сказать трудно, какая функция точнее.

На этом решение закончено, и я возвращаюсь к вопросу о натуральных значениях аргумента. В различных исследованиях, как правило, экономических или социологических, натуральными «иксами» нумеруют месяцы, годы или иные равные временнЫе промежутки. Рассмотрим, например, такую задачу:

Имеются следующие данные о розничном товарообороте магазина за первое полугодие:

Используя аналитическое выравнивание по прямой, определите объем товарооборота за июль .

Да без проблем: нумеруем месяцы 1, 2, 3, 4, 5, 6 и используем обычный алгоритм, в результате чего получаем уравнение – единственное, когда речь идёт о времени, то обычно используют букву «тэ» (хотя это не критично) . Полученное уравнение показывает, что в первом полугодии товарооборот увеличивался в среднем на 27,74 д.е. за месяц. Получим прогноз на июль (месяц №7) : д.е.

И подобных задач – тьма тьмущая. Желающие могут воспользоваться дополнительным сервисом, а именно моим экселевским калькулятором (демо-версия) , который решает разобранную задачу практически мгновенно! Рабочая версия программы доступна по обмену или за символическую плaтy .

В заключение урока краткая информация о нахождение зависимостей некоторых других видов. Собственно, и рассказывать-то особо нечего, поскольку принципиальный подход и алгоритм решения остаются прежними.

Предположим, что расположение экспериментальных точек напоминает гиперболу. Тогда чтобы отыскать коэффициенты наилучшей гиперболы , нужно найти минимум функции – желающие могут провести подробные вычисления и прийти к похожей системе:

С формально-технической точки зрения она получается из «линейной» системы (обозначим её «звёздочкой») заменой «икса» на . Ну а уж суммы-то рассчитаете, после чего до оптимальных коэффициентов «а» и «бэ» рукой подать .

Если есть все основания полагать, что точки располагаются по логарифмической кривой , то для розыска оптимальных значений и находим минимум функции . Формально в системе (*) нужно заменить на :

При вычислениях в Экселе используйте функцию LN . ПризнАюсь, мне не составит особого труда создать калькуляторы для каждого из рассматриваемых случаев, но всё-таки будет лучше, если вы сами «запрограммируете» вычисления. Видеоматериалы урока в помощь.

С экспоненциальной зависимостью ситуация чуть сложнее. Чтобы свести дело к линейному случаю, прологарифмируем функцию и воспользуемся свойствам логарифма :

Теперь, сопоставляя полученную функцию с линейной функцией , приходим к выводу, что в системе (*) нужно заменить на , а – на . Для удобства обозначим :

Обратите внимание, что система разрешается относительно и , и поэтому после нахождения корней нужно не забыть найти сам коэффициент .

Чтобы приблизить экспериментальные точки оптимальной параболой , следует найти минимум функции трёх переменных . После осуществления стандартных действий получаем следующую «рабочую» систему :

Да, конечно, сумм здесь побольше, но при использовании любимого приложения трудностей вообще никаких. И напоследок расскажу, как с помощью Экселя быстро выполнить проверку и построить нужную линию тренда: создаём точечную диаграмму, выделяем мышью любую из точек и через правый щелчок выбираем опцию «Добавить линию тренда» . Далее выбираем тип диаграммы и на вкладке «Параметры» активируем опцию «Показывать уравнение на диаграмме» . ОК

Как всегда статью хочется завершить какой-нибудь красивой фразой, и я уже чуть было не напечатал «Будьте в тренде!». Но вовремя передумал. И не из-за того, что она шаблонна. Не знаю, кому как, а мне что-то совсем не хочется следовать пропагандируемому американскому и в особенности европейскому тренду =) Поэтому я пожелаю каждому из вас придерживаться своей собственной линии!

http://www.grandars.ru/student/vysshaya-matematika/metod-naimenshih-kvadratov.html

Метод наименьших квадратов является одним из наиболее распространенных и наиболее разработанных вследствие своей простоты и эффективности методов оценки параметров линейныхэконометрических моделей . Вместе с тем, при его применении следует соблюдать определенную осторожность, поскольку построенные с его использованием модели могут не удовлетворять целому ряду требований к качеству их параметров и, вследствие этого, недостаточно “хорошо” отображать закономерности развития процесса .

Рассмотрим процедуру оценки параметров линейной эконометрической модели с помощью метода наименьших квадратов более подробно. Такая модель в общем виде может быть представлена уравнением (1.2):

y t = a 0 + a 1 х 1t +...+ a n х nt + ε t .

Исходными данными при оценке параметров a 0 , a 1 ,..., a n является вектор значений зависимой переменной y = (y 1 , y 2 , ... , y T)" и матрица значений независимых переменных

в которой первый столбец, состоящий из единиц, соответствует коэффициенту модели .

Название свое метод наименьших квадратов получил, исходя из основного принципа, которому должны удовлетворять полученные на его основе оценки параметров: сумма квадратов ошибки модели должна быть минимальной.

Примеры решения задач методом наименьших квадратов

Пример 2.1. Торговое предприятие имеет сеть, состоящую из 12 магазинов, информация о деятельности которых представлена в табл. 2.1.

Руководство предприятия хотело бы знать, как зависит размер годового товарооборота от торговой площади магазина.

Таблица 2.1

Номер магазина Годовой товарооборот, млн руб. Торговая площадь, тыс. м 2
19,76 0,24
38,09 0,31
40,95 0,55
41,08 0,48
56,29 0,78
68,51 0,98
75,01 0,94
89,05 1,21
91,13 1,29
91,26 1,12
99,84 1,29
108,55 1,49

Решение методом наименьших квадратов. Обозначим - годовой товарооборот -го магазина, млн руб.; - торговая площадь -го магазина, тыс. м 2 .

Рис.2.1. Диаграмма рассеяния для примера 2.1

Для определения формы функциональной зависимости между переменными и построим диаграмму рассеяния (рис. 2.1).

На основании диаграммы рассеяния можно сделать вывод о позитивной зависимости годового товарооборота от торговой площади (т.е. у будет расти с ростом ). Наиболее подходящая форма функциональной связи - линейная .

Информация для проведения дальнейших расчетов представлена в табл. 2.2. С помощью метода наименьших квадратов оценим параметры линейной однофакторной эконометрической модели

Таблица 2.2

t y t x 1t y t 2 x 1t 2 x 1t y t
19,76 0,24 390,4576 0,0576 4,7424
38,09 0,31 1450,8481 0,0961 11,8079
40,95 0,55 1676,9025 0,3025 22,5225
41,08 0,48 1687,5664 0,2304 19,7184
56,29 0,78 3168,5641 0,6084 43,9062
68,51 0,98 4693,6201 0,9604 67,1398
75,01 0,94 5626,5001 0,8836 70,5094
89,05 1,21 7929,9025 1,4641 107,7505
91,13 1,29 8304,6769 1,6641 117,5577
91,26 1,12 8328,3876 1,2544 102,2112
99,84 1,29 9968,0256 1,6641 128,7936
108,55 1,49 11783,1025 2,2201 161,7395
S 819,52 10,68 65008,554 11,4058 858,3991
Среднее 68,29 0,89

Таким образом,

Cледовательно, при увеличении торговой площади на 1 тыс. м 2 при прочих равных условиях среднегодовой товарооборот увеличивается на 67,8871 млн руб.

Пример 2.2. Руководство предприятия заметило, что годовой товарооборот зависит не только от торговой площади магазина (см. пример 2.1), но и от среднего числа посетителей. Соответствующая информация представлена в табл. 2.3.

Таблица 2.3

Решение. Обозначим - среднее число посетителей -го магазина в день, тыс. чел.

Для определения формы функциональной зависимости между переменными и построим диаграмму рассеяния (рис. 2.2).

На основании диаграммы рассеяния можно сделать вывод о позитивной зависимости годового товарооборота от среднего числа посетителей в день (т.е. у будет расти с ростом ). Форма функциональной зависимости - линейная.

Рис. 2.2. Диаграмма рассеяния для примера 2.2

Таблица 2.4

t x 2t x 2t 2 y t x 2t x 1t x 2t
8,25 68,0625 163,02 1,98
10,24 104,8575 390,0416 3,1744
9,31 86,6761 381,2445 5,1205
11,01 121,2201 452,2908 5,2848
8,54 72,9316 480,7166 6,6612
7,51 56,4001 514,5101 7,3598
12,36 152,7696 927,1236 11,6184
10,81 116,8561 962,6305 13,0801
9,89 97,8121 901,2757 12,7581
13,72 188,2384 1252,0872 15,3664
12,27 150,5529 1225,0368 15,8283
13,92 193,7664 1511,016 20,7408
S 127,83 1410,44 9160,9934 118,9728
Cреднее 10,65

В целом необходимо определить параметры двухфакторной эконометрической модели

у t = a 0 + a 1 х 1t + a 2 х 2t + ε t

Информация, требующаяся для дальнейших расчетов, представлена в табл. 2.4.

Оценим параметры линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов.

Таким образом,

Оценка коэффициента =61,6583 показывает, что при прочих равных условиях с увеличением торговой площади на 1 тыс. м 2 годовой товарооборот увеличится в среднем на 61,6583 млн руб.

Оценка коэффициента = 2,2748 показывает, что при прочих равных условиях с увеличением среднего числа посетителей на 1 тыс. чел. в день годовой товарооборот увеличится в среднем на 2,2748 млн руб.

Пример 2.3. Используя информацию, представленную в табл. 2.2 и 2.4, оценить параметр однофакторной эконометрической модели

где - центрированное значение годового товарооборота -го магазина, млн руб.; - центрированное значение среднедневного числа посетителей t-го магазина, тыс. чел. (см. примеры 2.1-2.2).

Решение. Дополнительная информация, необходимая для расчетов, представлена в табл. 2.5.

Таблица 2.5

-48,53 -2,40 5,7720 116,6013
-30,20 -0,41 0,1702 12,4589
-27,34 -1,34 1,8023 36,7084
-27,21 0,36 0,1278 -9,7288
-12,00 -2,11 4,4627 25,3570
0,22 -3,14 9,8753 -0,6809
6,72 1,71 2,9156 11,4687
20,76 0,16 0,0348 3,2992
22,84 -0,76 0,5814 -17,413
22,97 3,07 9,4096 70,4503
31,55 1,62 2,6163 51,0267
40,26 3,27 10,6766 131,5387
Cумма 48,4344 431,0566

Используя формулу (2.35), получим

Таким образом,

http://www.cleverstudents.ru/articles/mnk.html

Пример.

Экспериментальные данные о значениях переменных х и у приведены в таблице.

В результате их выравнивания получена функция

Используя метод наименьших квадратов , аппроксимировать эти данные линейной зависимостью y=ax+b (найти параметры а и b ). Выяснить, какая из двух линий лучше (в смысле метода наименьших квадратов) выравнивает экспериментальные данные. Сделать чертеж.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

Значения в четвертой строке таблицы получены умножением значений 2-ой строки на значения 3-ей строки для каждого номера i .

Значения в пятой строке таблицы получены возведением в квадрат значений 2-ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов а и b . Подставляем в них соответствующие значения из последнего столбца таблицы:

Следовательно, y = 0.165x+2.184 - искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y = 0.165x+2.184 или лучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.

Доказательство.

Чтобы при найденных а и b функция принимала наименьшее значение, необходимо чтобы в этой точке матрица квадратичной формы дифференциала второго порядка для функции была положительно определенной. Покажем это.

Дифференциал второго порядка имеет вид:

То есть

Следовательно, матрица квадратичной формы имеет вид

причем значения элементов не зависят от а и b .

Покажем, что матрица положительно определенная. Для этого нужно, чтобы угловые миноры были положительными.

Угловой минор первого порядка . Неравенство строгое, так как точки

Которое находит самое широкое применение в различных областях науки и практической деятельности. Это может быть физика, химия, биология, экономика, социология, психология и так далее, так далее. Волею судьбы мне часто приходится иметь дело с экономикой, и поэтому сегодня я оформлю вам путёвку в удивительную страну под названием Эконометрика =) …Как это не хотите?! Там очень хорошо – нужно только решиться! …Но вот то, что вы, наверное, определённо хотите – так это научиться решать задачи методом наименьших квадратов . И особо прилежные читатели научатся решать их не только безошибочно, но ещё и ОЧЕНЬ БЫСТРО;-) Но сначала общая постановка задачи + сопутствующий пример:

Пусть в некоторой предметной области исследуются показатели , которые имеют количественное выражение. При этом есть все основания полагать, что показатель зависит от показателя . Это полагание может быть как научной гипотезой, так и основываться на элементарном здравом смысле. Оставим, однако, науку в сторонке и исследуем более аппетитные области – а именно, продовольственные магазины. Обозначим через:

– торговую площадь продовольственного магазина, кв.м.,
– годовой товарооборот продовольственного магазина, млн. руб.

Совершенно понятно, что чем больше площадь магазина, тем в большинстве случаев будет больше его товарооборот.

Предположим, что после проведения наблюдений/опытов/подсчётов/танцев с бубном в нашем распоряжении оказываются числовые данные:

С гастрономами, думаю, всё понятно: – это площадь 1-го магазина, – его годовой товарооборот, – площадь 2-го магазина, – его годовой товарооборот и т.д. Кстати, совсем не обязательно иметь доступ к секретным материалам – довольно точную оценку товарооборота можно получить средствами математической статистики . Впрочем, не отвлекаемся, курс коммерческого шпионажа – он уже платный =)

Табличные данные также можно записать в виде точек и изобразить в привычной для нас декартовой системе .

Ответим на важный вопрос: сколько точек нужно для качественного исследования?

Чем больше, тем лучше. Минимально допустимый набор состоит из 5-6 точек. Кроме того, при небольшом количестве данных в выборку нельзя включать «аномальные» результаты. Так, например, небольшой элитный магазин может выручать на порядки больше «своих коллег», искажая тем самым общую закономерность, которую и требуется найти!

Если совсем просто – нам нужно подобрать функцию , график которой проходит как можно ближе к точкам . Такую функцию называют аппроксимирующей (аппроксимация – приближение) или теоретической функцией . Вообще говоря, тут сразу появляется очевидный «претендент» – многочлен высокой степени, график которого проходит через ВСЕ точки. Но этот вариант сложен, а зачастую и просто некорректен (т.к. график будет всё время «петлять» и плохо отражать главную тенденцию) .

Таким образом, разыскиваемая функция должна быть достаточно простА и в то же время отражать зависимость адекватно. Как вы догадываетесь, один из методов нахождения таких функций и называется методом наименьших квадратов . Сначала разберём его суть в общем виде. Пусть некоторая функция приближает экспериментальные данные :


Как оценить точность данного приближения? Вычислим и разности (отклонения) между экспериментальными и функциональными значениями (изучаем чертёж) . Первая мысль, которая приходит в голову – это оценить, насколько великА сумма , но проблема состоит в том, что разности могут быть и отрицательны (например, ) и отклонения в результате такого суммирования будут взаимоуничтожаться. Поэтому в качестве оценки точности приближения напрашивается принять сумму модулей отклонений:

или в свёрнутом виде: (вдруг кто не знает: – это значок суммы, а – вспомогательная переменная-«счётчик», которая принимает значения от 1 до ) .

Приближая экспериментальные точки различными функциями, мы будем получать разные значения , и очевидно, где эта сумма меньше – та функция и точнее.

Такой метод существует и называется он методом наименьших модулей . Однако на практике получил гораздо бОльшее распространение метод наименьших квадратов , в котором возможные отрицательные значения ликвидируются не модулем, а возведением отклонений в квадрат:

, после чего усилия направлены на подбор такой функции , чтобы сумма квадратов отклонений была как можно меньше. Собственно, отсюда и название метода.

И сейчас мы возвращаемся к другому важному моменту: как отмечалось выше, подбираемая функция должна быть достаточно простА – но ведь и таких функций тоже немало: линейная , гиперболическая , экспоненциальная , логарифмическая , квадратичная и т.д. И, конечно же, тут сразу бы хотелось «сократить поле деятельности». Какой класс функций выбрать для исследования? Примитивный, но эффективный приём:

– Проще всего изобразить точки на чертеже и проанализировать их расположение. Если они имеют тенденцию располагаться по прямой, то следует искать уравнение прямой с оптимальными значениями и . Иными словами, задача состоит в нахождении ТАКИХ коэффициентов – чтобы сумма квадратов отклонений была наименьшей.

Если же точки расположены, например, по гиперболе , то заведомо понятно, что линейная функция будет давать плохое приближение. В этом случае ищем наиболее «выгодные» коэффициенты для уравнения гиперболы – те, которые дают минимальную сумму квадратов .

А теперь обратите внимание, что в обоих случаях речь идёт о функции двух переменных , аргументами которой являются параметры разыскиваемых зависимостей :

И по существу нам требуется решить стандартную задачу – найти минимум функции двух переменных .

Вспомним про наш пример: предположим, что «магазинные» точки имеют тенденцию располагаться по прямой линии и есть все основания полагать наличие линейной зависимости товарооборота от торговой площади. Найдём ТАКИЕ коэффициенты «а» и «бэ», чтобы сумма квадратов отклонений была наименьшей. Всё как обычно – сначала частные производные 1-го порядка . Согласно правилу линейности дифференцировать можно прямо под значком суммы:

Если хотите использовать данную информацию для реферата или курсовика – буду очень благодарен за поставленную ссылку в списке источников, такие подробные выкладки найдёте мало где:

Составим стандартную систему:

Сокращаем каждое уравнение на «двойку» и, кроме того, «разваливаем» суммы:

Примечание : самостоятельно проанализируйте, почему «а» и «бэ» можно вынести за значок суммы. Кстати, формально это можно проделать и с суммой

Перепишем систему в «прикладном» виде:

после чего начинает прорисовываться алгоритм решения нашей задачи:

Координаты точек мы знаем? Знаем. Суммы найти можем? Легко. Составляем простейшую систему двух линейных уравнений с двумя неизвестными («а» и «бэ»). Систему решаем, например, методом Крамера , в результате чего получаем стационарную точку . Проверяя достаточное условие экстремума , можно убедиться, что в данной точке функция достигает именно минимума . Проверка сопряжена с дополнительными выкладками и поэтому оставим её за кадром (при необходимости недостающий кадр можно посмотреть ) . Делаем окончательный вывод:

Функция наилучшим образом (по крайне мере, по сравнению с любой другой линейной функцией) приближает экспериментальные точки . Грубо говоря, её график проходит максимально близко к этим точкам. В традициях эконометрики полученную аппроксимирующую функцию также называют уравнением пАрной линейной регрессии .

Рассматриваемая задача имеет большое практическое значение. В ситуации с нашим примером, уравнение позволяет прогнозировать, какой товарооборот («игрек») будет у магазина при том или ином значении торговой площади (том или ином значении «икс») . Да, полученный прогноз будет лишь прогнозом, но во многих случаях он окажется достаточно точным.

Я разберу всего лишь одну задачу с «реальными» числами, поскольку никаких трудностей в ней нет – все вычисления на уровне школьной программы 7-8 класса. В 95 процентов случаев вам будет предложено отыскать как раз линейную функцию, но в самом конце статьи я покажу, что ничуть не сложнее отыскать уравнения оптимальной гиперболы, экспоненты и некоторых других функций.

По сути, осталось раздать обещанные плюшки – чтобы вы научились решать такие примеры не только безошибочно, но ещё и быстро. Внимательно изучаем стандарт:

Задача

В результате исследования взаимосвязи двух показателей, получены следующие пары чисел:

Методом наименьших квадратов найти линейную функцию, которая наилучшим образом приближает эмпирические (опытные) данные. Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции . Найти сумму квадратов отклонений между эмпирическими и теоретическими значениями. Выяснить, будет ли функция лучше (с точки зрения метода наименьших квадратов) приближать экспериментальные точки.

Заметьте, что «иксовые» значения – натуральные, и это имеет характерный содержательный смысл, о котором я расскажу чуть позже; но они, разумеется, могут быть и дробными. Кроме того, в зависимости от содержания той или иной задачи как «иксовые», так и «игрековые» значения полностью или частично могут быть отрицательными. Ну а у нас дана «безликая» задача, и мы начинаем её решение :

Коэффициенты оптимальной функции найдём как решение системы:

В целях более компактной записи переменную-«счётчик» можно опустить, поскольку и так понятно, что суммирование осуществляется от 1 до .

Расчёт нужных сумм удобнее оформить в табличном виде:


Вычисления можно провести на микрокалькуляторе, но гораздо лучше использовать Эксель – и быстрее, и без ошибок; смотрим короткий видеоролик:

Таким образом, получаем следующую систему :

Тут можно умножить второе уравнение на 3 и из 1-го уравнения почленно вычесть 2-е . Но это везение – на практике системы чаще не подарочны, и в таких случаях спасает метод Крамера :
, значит, система имеет единственное решение.

Выполним проверку. Понимаю, что не хочется, но зачем же пропускать ошибки там, где их можно стопроцентно не пропустить? Подставим найденное решение в левую часть каждого уравнения системы:

Получены правые части соответствующих уравнений, значит, система решена правильно.

Таким образом, искомая аппроксимирующая функция: – из всех линейных функций экспериментальные данные наилучшим образом приближает именно она.

В отличие от прямой зависимости товарооборота магазина от его площади, найденная зависимость является обратной (принцип «чем больше – тем меньше») , и этот факт сразу выявляется по отрицательному угловому коэффициенту . Функция сообщает нам о том, что с увеличение некоего показателя на 1 единицу значение зависимого показателя уменьшается в среднем на 0,65 единиц. Как говорится, чем выше цена на гречку, тем меньше её продано.

Для построения графика аппроксимирующей функции найдём два её значения:

и выполним чертёж:


Построенная прямая называется линией тренда (а именно – линией линейного тренда, т.е. в общем случае тренд – это не обязательно прямая линия) . Всем знакомо выражение «быть в тренде», и, думаю, что этот термин не нуждается в дополнительных комментариях.

Вычислим сумму квадратов отклонений между эмпирическими и теоретическими значениями. Геометрически – это сумма квадратов длин «малиновых» отрезков (два из которых настолько малы, что их даже не видно) .

Вычисления сведём в таблицу:


Их можно опять же провести вручную, на всякий случай приведу пример для 1-й точки:

но намного эффективнее поступить уже известным образом:

Еще раз повторим: в чём смысл полученного результата? Из всех линейных функций у функции показатель является наименьшим, то есть в своём семействе это наилучшее приближение. И здесь, кстати, не случаен заключительный вопрос задачи: а вдруг предложенная экспоненциальная функция будет лучше приближать экспериментальные точки?

Найдем соответствующую сумму квадратов отклонений – чтобы различать, я обозначу их буквой «эпсилон». Техника точно такая же:


И снова на всякий пожарный вычисления для 1-й точки:

В Экселе пользуемся стандартной функцией EXP (синтаксис можно посмотреть в экселевской Справке) .

Вывод : , значит, экспоненциальная функция приближает экспериментальные точки хуже, чем прямая .

Но тут следует отметить, что «хуже» – это ещё не значит , что плохо. Сейчас построил график этой экспоненциальной функции – и он тоже проходит близко к точкам – да так, что без аналитического исследования и сказать трудно, какая функция точнее.

На этом решение закончено, и я возвращаюсь к вопросу о натуральных значениях аргумента. В различных исследованиях, как правило, экономических или социологических, натуральными «иксами» нумеруют месяцы, годы или иные равные временнЫе промежутки. Рассмотрим, например, такую задачу.

Пример.

Экспериментальные данные о значениях переменных х и у приведены в таблице.

В результате их выравнивания получена функция

Используя метод наименьших квадратов , аппроксимировать эти данные линейной зависимостью y=ax+b (найти параметры а и b ). Выяснить, какая из двух линий лучше (в смысле метода наименьших квадратов) выравнивает экспериментальные данные. Сделать чертеж.

Суть метода наименьших квадратов (МНК).

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов.

Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции по переменным а и b , приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или ) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а и b функция принимает наименьшее значение. Доказательство этого факта приведено .

Вот и весь метод наименьших квадратов. Формула для нахождения параметра a содержит суммы , , , и параметр n - количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a .

Пришло время вспомнить про исходый пример.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

Значения в четвертой строке таблицы получены умножением значений 2-ой строки на значения 3-ей строки для каждого номера i .

Значения в пятой строке таблицы получены возведением в квадрат значений 2-ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов а и b . Подставляем в них соответствующие значения из последнего столбца таблицы:

Следовательно, y = 0.165x+2.184 - искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y = 0.165x+2.184 или лучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.

Оценка погрешности метода наименьших квадратов.

Для этого требуется вычислить суммы квадратов отклонений исходных данных от этих линий и , меньшее значение соответствует линии, которая лучше в смысле метода наименьших квадратов аппроксимирует исходные данные.

Так как , то прямая y = 0.165x+2.184 лучше приближает исходные данные.

Графическая иллюстрация метода наименьших квадратов (мнк).

На графиках все прекрасно видно. Красная линия – это найденная прямая y = 0.165x+2.184 , синяя линия – это , розовые точки – это исходные данные.

Для чего это нужно, к чему все эти аппроксимации?

Я лично использую для решения задач сглаживания данных, задач интерполяции и экстраполяции (в исходном примере могли бы попросить найти занчение наблюдаемой величины y при x=3 или при x=6 по методу МНК). Но подробнее поговорим об этом позже в другом разделе сайта.

Доказательство.

Чтобы при найденных а и b функция принимала наименьшее значение, необходимо чтобы в этой точке матрица квадратичной формы дифференциала второго порядка для функции была положительно определенной. Покажем это.

КУРСОВАЯ РАБОТА

Аппроксимация функции методом наименьших квадратов


Введение

эмпирический mathcad аппроксимация

Целью курсовой работы является углубление знаний по информатике, развитие и закрепление навыков работы с табличным процессором Microsoft Excel и MathCAD. Применение их для решения задач с помощью ЭВМ из предметной области, связанной с исследованиями.

В каждом задании формулируются условия задачи, исходные данные, форма выдачи результатов, указываются основные математические зависимости для решения задачи Контрольный расчет позволяет убедиться в правильности работы программы.

Понятие аппроксимация представляет собой приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в использовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результатов.

Как известно, между величинами может существовать точная (функциональная) связь, когда одному значению аргумента соответствует одно определенное значение, и менее точная (корреляционная) связь, когда одному конкретному значению аргумента соответствует приближенное значение или некоторое множество значений функции, в той или иной степени близких друг к другу. При ведении научных исследований, обработке результатов наблюдения или эксперимента обычно приходиться сталкиваться со вторым вариантом. При изучении количественных зависимостей различных показателей, значения которых определяются эмпирически, как правило, имеется некоторая их вариабельность. Частично она задается неоднородностью самих изучаемых объектов неживой и, особенно, живой природы, частично обуславливается погрешностью наблюдения и количественной обработке материалов. Последнюю составляющую не всегда удается исключить полностью, можно лишь минимизировать ее тщательным выбором адекватного метода исследования и аккуратностью работы.

Специалисты в области автоматизации технологических процессов и производств имеют дело с большим объёмом экспериментальных данных, для обработки которых используется компьютер. Исходные данные и полученные результаты вычислений могут быть представлены в табличной форме, используя табличные процессоры (электронные таблицы) и, в частности, Excel. Курсовая работа по информатике позволяет студенту закрепить и развить навыки работы с помощью базовых компьютерных технологий при решении задач в сфере профессиональной деятельности.- система компьютерной алгебры из класса систем автоматизированного проектирования, ориентированная на подготовку интерактивных документов с вычислениями и визуальным сопровождением, отличается легкостью использования и применения для коллективной работы.


1. Общие сведения


Очень часто, особенно при анализе эмпирических данных возникает необходимость найти в явном виде функциональную зависимость между величинами x и у , которые получены в результате измерений.

При аналитическом исследовании взаимосвязи между двумя величинами x и y производят ряд наблюдений и в результате получается таблица значений:


xx 1 x 1 x i X n уy 1 y 1 y i Y n

Эта таблица обычно получается как итог каких-либо экспериментов, в которых x, (независимая величина) задается экспериментатором, а у, получается в результате опыта. Поэтому эти значения у, будем называть эмпирическими или опытными значениями.

Между величинами x и y существует функциональная зависимость, но ее аналитический вид обычно неизвестен, поэтому возникает практически важная задача - найти эмпирическую формулу


y = f(x; a1, a2,…, am), (1)


(где a 1 , a 2 ,…, a m - параметры), значения которой при x = x, возможно мало отличались бы от опытных значений у, (i = 1,2,…, п) .

Обычно указывают класс функций (например, множество линейных, степенных, показательных и т.п.) из которого выбирается функция f (x) , и далее определяются наилучшие значения параметров.

Если в эмпирическую формулу (1) подставить исходные x, то получим теоретические значения

Y T i = f (x i ; a1, a2……a m ) , где i = 1,2,…, n .


Разности y i T - у i , называются отклонениями и представляют собой расстояния по вертикали от точек M i до графика эмпирической функции.

Согласно методу наименьших квадратов наилучшими коэффициентами a 1 , a 2 ,…, a m считаются те, для которых сумма квадратов отклонений найденной эмпирической функции от заданных значений функции



будет минимальной.

Поясним геометрический смысл метода наименьших квадратов.

Каждая пара чисел (x i , y i ) из исходной таблицы определяет точку M i на плоскости XOY. Используя формулу (1) при различных значениях коэффициентов a 1 , a 2 ,…, a m можно построить ряд кривых, которые являются графиками функции (1). Задача состоит в определении коэффициентов a 1 , a 2 ,…, a m таким образом, чтобы сумма квадратов расстояний по вертикали от точек M i (x i , y i ) до графика функции (1) была наименьшей (рис. 1).



Построение эмпирической формулы состоит из двух этапов: выяснение общего вида этой формулы и определение ее наилучших параметров.

Если неизвестен характер зависимости между данными величинами x и y , то вид эмпирической зависимости является произвольным. Предпочтение отдается простым формулам, обладающим хорошей точностью. Удачный выбор эмпирической формулы в значительной мере зависит от знаний исследователя в предметной области, используя которые он может указать класс функций из теоретических соображений. Большое значение имеет изображение полученных данных в декартовых или в специальных системах координат (полулогарифмической, логарифмической и т.д.). По положению точек можно примерно угадать общий вид зависимости путем установления сходства между построенным графиком и образцами известных кривых.

Определение наилучших коэффициентов a 1 , a 2,…, a m входящих в эмпирическую формулу производят хорошо известным аналитическими методами.

Для того, чтобы найти набор коэффициентовa a 1 , a 2 …..a m , которые доставляют минимум функции S, определяемой формулой (2), используем необходимое условие экстремума функции нескольких переменных - равенство нулю частных производных.

В результате получим нормальную систему для определения коэффициентов a i (i = 1,2,…, m) :



Таким образом, нахождение коэффициентов a i сводится к решению системы (3). Эта система упрощается, если эмпирическая формула (1) линейна относительно параметров a i , тогда система (3) - будет линейной.


1.1 Линейная зависимость


Конкретный вид системы (3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (1). В случае линейной зависимости y = a 1 + a 2 x система (3) примет вид:


Эта линейная система может быть решена любым известным методом (методом Гаусса, простых итераций, формулами Крамера).


1.2 Квадратичная зависимость


В случае квадратичной зависимости y = a 1 + a 2 x + a 3x2 система (3) примет вид:



1.3 Экспоненциальная зависимость


В ряде случаев в качестве эмпирической формулы берут функцию в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость


y = a 1 * e a2x (6)


где a1 иa2, неопределенные коффициенты.

Линеаризация достигается путем логарифмирования равенства (6), после чего получаем соотношение

ln y = ln a1 + a2x(7)


Обозначим ln у и ln a x соответственно через t и c , тогда зависимость (6) может быть записана в виде t = a 1 + a 2 х , что позволяет применить формулы (4) с заменой a 1 на c и у i на t i


1.4 Элементы теории корреляции


График восстановленной функциональной зависимости у(х) по результатам измерений (хi , у i ), i = 1,2, K , n называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности. При этом результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке этой таблицы приводятся численности n iJ - тех пар (х, у) , компоненты которых попадают в соответствующие интервалы группировки по каждой переменной. Предполагая длины интервалов группировки (по каждой переменной) равными между собой, выбирают центры хi (соответственно у i ) этих интервалов и числа n iJ - в качестве основы для расчетов.

Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой.

Коэффициент корреляции вычисляется по формуле:


где, и - среднее арифметическое значение соответственно х и у .

Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе |р| к 1, тем теснее линейная связь между х и у.

В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости.

Корреляционное отношение вычисляется по формуле:



где n i = , n f = , а числитель характеризует рассеяние условных средних у, около безусловного среднего y .

Всегда. Равенство = 0 соответствует некоррелированным случайным величинам; = 1 тогда и только тогда, когда имеется точная функциональная связь междуy и x. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина - ? 2 используется в качестве индикатора отклонения регрессии от линейной.

Корреляционное отношение является мерой корреляционной связи y с x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построенная кривая отражает эмпирические данные вводится еще одна характеристика - коэффициент детерминированности.

Для его описания рассмотрим следующие величины. - полная сумма квадратов, где среднее значение.

Можно доказать следующее равенство

Первое слагаемое равно Sост = и называется остаточной суммой квадратов. Оно характеризует отклонение экспериментальных от теоритических.

Второе слагаемое равно Sрегр = 2 и называется регрессионной суммой квадратов и оно характеризует разброс данных.

Очевидно, что справедливо следующее равенство Sполн = Sост + Sрегр.

Коэффициент детерминированности определяется по формуле:



Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности r 2 , который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y

Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае когда выполняется равенство r 2 = то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные.


2. Постановка задачи


1. Используя метод наименьших квадратов функцию, заданную таблично, аппроксимировать

а) многочленом первой степени;

б) многочленом второй степени;

в) экспоненциальной зависимостью.

Для каждой зависимости вычислить коэффициент детерминированности.

Вычислить коэффициент корреляции (только в случае а).

Для каждой зависимости построить линию тренда.

Используя функцию ЛИНЕЙН вычислить числовые характеристики зависимости от.

Сравнить свои вычисления с результатами, полученными при помощи функции ЛИНЕЙН.

Сделать вывод, какая из полученных формул наилучшим образом аппроксимирует функцию.

Написать программу на одном из языков программирования и сравнить результаты счета с полученными выше.


3. Исходные данные


Функция задана рисунком 1.



4. Расчет аппроксимаций в табличном процессоре Excel


Для проведения расчетов целесообразно воспользоваться табличным процессором Microsoft Excel. И данные расположить как показано на рисунке 2.



Для этого заносим:

·в ячейки A6:A30 заносим значения xi.

·в ячейки B6:B30 заносим значения уi.

·в ячейку C6 вводим формулу =А6^2.

·в ячейки C7:C30 эта формула копируется.

·в ячейку D6 вводим формулу =А6*В6.

·в ячейки D7:D30 эта формула копируется.

·в ячейку F6 вводим формулу =А6^4.

·в ячейки F7:F30 эта формула копируется.

·в ячейку G6 вводим формулу =А6^2*В6.

·в ячейки G7:G30 эта формула копируется.

·в ячейку H6 вводим формулу =LN(B6).

·в ячейки H7:H30 эта формула копируется.

·в ячейку I6 вводим формулу =A6*LN(B6).

·в ячейки I7:I30 эта формула копируется. Последующие шаги делаем с помощью автосуммирования

·в ячейку А33 вводим формулу =СУММ (А6:А30).

·в ячейку B33 вводим формулу =СУММ (В6:В30).

·в ячейку C33 вводим формулу =СУММ (С6:С30).

·в ячейку D33 вводим формулу =СУММ (D6:D30).

·в ячейку E33 вводим формулу =СУММ (E6:E30).

·в ячейку F33 вводим формулу =СУММ (F6:F30).

·в ячейку G33 вводим формулу =СУММ (G6:G30).

·в ячейку H33 вводим формулу =СУММ (H6:H30).

·в ячейку I33 вводим формулу =СУММ (I6:I30).

Аппроксимируем функцию y = f (x) линейной функцией y = a 1 + a 2x. Для определения коэффициентов a1 и a2 воспользуемся системой (4). Используя итоговые суммы таблицы 2, расположенные в ячейках A33, B33, C33 и D33, запишем систему (4) в виде



решив которую, получим a1 = -24,7164 и a2 = 11,63183

Таким образом, линейная аппроксимация имеет вид y= -24,7164 + 11,63183х (12)

Решение системы (11) проводили, пользуясь средствами Microsoft Excel. Результаты представлены на рисунке 3:



В таблице в ячейках A38:B39 записана формула {=МОБР (A35:B36)}. В ячейках E38:E39 записана формула {=МУМНОЖ (A38:B39, C35:C36)}.


Далее аппроксимируем функцию y = f (x) квадратичной функцией y = a 1 + a 2 x + a 3 x 2. Для определения коэффициентов a1, a2 и a3 воспользуемся системой (5). Используя итоговые суммы таблицы 2, расположенные в ячейках A33, B33, C33, D33, E33, F33 и G33 запишем систему (5) в виде:



Решив которую, получим a1 = 1,580946, a2 = -0,60819 и a3 = 0,954171 (14)

Таким образом, квадратичная аппроксимация имеет вид:

у = 1,580946 -0,60819х +0,954171 х 2

Решение системы (13) проводили, пользуясь средствами Microsoft Excel. Результаты представлены на рисунке 4.



В таблице в ячейках A46:C48 записана формула {=МОБР (A41:C43)}. В ячейках F46:F48 записана формула {=МУМНОЖ (A41:C43, D46:D48)}.

Теперь аппроксимируем функцию y = f (х) экспоненциальной функцией y = a 1 e a2x . Для определения коэффициентов a 1 и a 2 прологарифмируем значения y i и используя итоговые суммы таблицы 2, расположенные в ячейках A26, C26, H26 и I26 получим систему:



где с = ln(a 1 ).

Решив систему (10) найдем с = 0,506435, a2 = 0.409819.

После потенцирования получим a1 = 1,659365.

Таким образом, экспоненциальная аппроксимация имеет вид y = 1,659365*e 0,4098194x

Решение системы (15) проводили, пользуясь средствами Microsoft Excel. Результаты представлены на рисунке 5.


В таблице в ячейках A55:B56 записана формула {=МОБР (A51:B52)}. В ячейках E54:E56 записана формула {=МУМНОЖ (A51:B52, С51:С52)}. В ячейке E56 записана формула =EXP(E54).

Вычислим среднее арифметическое x и у по формулам:



Результаты расчета x и y средствами Microsoft Excel представлены на рисунке 6.



В ячейке B58 записана формула =A33/25. В ячейке B59 записана формула =B33/25.

Таблица 2


Поясним как таблица на рисунке 7 составляется.

Ячейки A6:A33 и B6:B33 уже заполнены (см. рис. 2).

·в ячейку J6 вводим формулу =(A6-$B$58)*(B6-$B$59).

·в ячейки J7:J30 эта формула копируется.

·в ячейку K6 вводим формулу =(А6-$В$58)^2.

·в ячейки K7:K30 эта формула копируется.

·в ячейку L6 вводим формулу =(В1-$В$59)^2.

·в ячейки L7:L30 эта формула копируется.

·в ячейку M6 вводим формулу =($Е$38+$Е$39*А6-В6)^2.

·в ячейки M7:M30 эта формула копируется.

·в ячейку N6 вводим формулу =($F$46 +$F$47*A6 +$F$48*A6 Л6-В6)^2.

·в ячейки N7:N30 эта формула копируется.

·в ячейку O6 вводим формулу =($Е$56*ЕХР ($Е$55*А6) - В6)^2.

·в ячейки O7:O30 эта формула копируется.

Последующие шаги делаем с помощью автосуммирования.

·в ячейку J33 вводим формулу =CYMM (J6:J30).

·в ячейку K33 вводим формулу =СУММ (К6:К30).

·в ячейку L33 вводим формулу =CYMM (L6:L30).

·в ячейку M33 вводим формулу =СУММ (М6:М30).

·в ячейку N33 вводим формулу =СУММ (N6:N30).

·в ячейку O33 вводим формулу =СУММ (06:030).

Теперь проведем расчеты коэффициента корреляции по формуле (8) (только для линейной аппроксимации) и коэффициента детерминированности по формуле (10). Результаты расчетов средствами Microsoft Ехcеl представлены на рисунке 7.



В таблице 8 в ячейке B61 записана формула =J33/(K33*L33^(1/2). В ячейке B62 записана формула =1 - M33/L33. В ячейке B63 записана формула =1 - N33/L33. В ячейке B64 записана формула =1 - O33/L33.

Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные.


4.1 Построение графиков в Excel


Выделим ячейки A1:A25, после этого обратимся к мастеру диаграмм. Выберем точечный график. После того как диаграмма будет построена, щелкнем правой кнопкой мышки на линии графика и выберем добавить линию тренда (соответственно линейную, экспоненциальную, степенную и полиномиальную второй степени).

График линейной аппроксимации


График квадратичной аппроксимации


График экспоненциальной аппроксимации.


5. Аппроксимация функции с помощью MathCAD


Аппроксимация данных с учетом их статистических параметров относится к задачам регрессии. Они обычно возникают при обработке экспериментальных данных, полученных в результате измерений процессов или физических явлений, статистических по своей природе (как, например, измерения в радиометрии и ядерной геофизике), или на высоком уровне помех (шумов). Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.


.1 Линейная регрессия


Линейная регрессия в системе Mathcad выполняется по векторам аргумента Х и отсчетов Y функциями:

intercept (x, y) - вычисляет параметр а 1 , смещение линии регрессии по вертикали (см. рис.)

slope (x, y) - вычисляет параметр a 2 , угловой коэффициент линии регрессии (см. рис.)

y(x) = a1+a2*x


Функция corr (у, y(x)) вычисляет коэффициент корреляции Пирсона. Чем он ближе к 1, тем точнее обрабатываемые данные соответствуют линейной зависимости (см. рис.)

.2 Полиноминальная регрессия


Одномерная полиномиальная регрессия с произвольной степенью n полинома и с произвольными координатами отсчетов в Mathcad выполняется функциями:

regress (х, у, n) - вычисляет вектор S, в составе которого находятся коэффициенты ai полинома n -й степени;

Значения коэффициентов ai могут быть извлечены из вектора S функцией submatrix (S, 3, length(S) - 1, 0, 0).

Полученные значения коэффициентов используем в уравнении регрессии


y(x) = a1+a2*x+a3*x 2 (см. рис.)

.3 Нелинейная регрессия


Для простых типовых формул аппроксимации предусмотрен ряд функций нелинейной регрессии, в которых параметры функций подбираются программой Mathcad.

К их числу относится функция expfit (x, y, s), которая возвращает вектор, содержащий коэффициенты a1, a2 и a3 экспоненциальной функции

y(x) = a1 ^exp (a2 x) + a3. В вектор S вводятся начальные значения коэффициентов a1, a2 и a3 первого приближения.


Заключение


Анализ результатов расчетов показывает, что линейная аппроксимация наилучшим образом описывает экспериментальные данные.

Результаты полученные с помощью программы MathCAD полностью совпадают со значениями полученными с помощью Excel. Это говорит о верности вычислений.


Список используемой литературы

  1. Информатика: Учебник / Под ред. проф. Н.В. Макаровой. М.: Финансы и статистика 2007
  2. Информатика: Практикум по технологии работы на компьютере / Под. Ред. проф. Н.В. Макаровой. М Финансы и статистика, 2011.
  3. Н.С. Пискунов. Дифференциальное и интегральное исчисление, 2010.
  4. Информатика, Аппроксимация методом наименьших квадратов, методические указания, Санкт-Петербург, 2009.
Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

(см. рисунок). Требуется найти уравнение прямой

Чем меньше числа по абсолютной величине, тем лучше подобрана прямая (2). В качестве характеристики точности подбора прямой (2) можно принять сумму квадратов

Условия минимума S будут

(6)
(7)

Уравнения (6) и (7) можно записать в таком виде:

(8)
(9)

Из уравнений (8) и (9) легко найти a и b по опытным значениям x i и y i . Прямая (2), определяемая уравнениями (8) и (9), называется прямой, полученной по методу наименьших квадратов (этим названием подчеркивается то, что сумма квадратов S имеет минимум). Уравнения (8) и (9), из которых определяется прямая (2), называются нормальными уравнениями.

Можно указать простой и общий способ составления нормальных уравнений. Используя опытные точки (1) и уравнение (2), можно записать систему уравнений для a и b

y 1 =ax 1 +b,
y 2 =ax 2 +b,
...
(10)
y n =ax n +b,

Умножим левую и правую части каждого из этих уравнений на коэффициент при первой неизвестной a (т.е. на x 1 , x 2 , ..., x n) и сложим полученные уравнения, в результате получится первое нормальное уравнение (8).

Умножим левую и правую части каждого из этих уравнений на коэффициент при второй неизвестной b, т.е. на 1, и сложим полученные уравнения, в результате получится второе нормальное уравнение (9).

Этот способ получения нормальных уравнений является общим: он пригоден, например, и для функции

есть величина постоянная и ее нужно определить по опытным данным (1).

Систему уравнений для k можно записать:

Найти прямую (2) по методу наименьших квадратов.

Решение. Находим:

x i =21, y i =46,3, x i 2 =91, x i y i =179,1.

Записываем уравнения (8) и (9)

Отсюда находим

Оценка точности метода наименьших квадратов

Дадим оценку точности метода для линейного случая, когда имеет место уравнение (2).

Пусть опытные значения x i являются точными, а опытные значения y i имеют случайные ошибки с одинаковой дисперсией для всех i.

Введем обозначение

(16)

Тогда решения уравнений (8) и (9) можно представить в виде

(17)
(18)
где
(19)
Из уравнения (17) находим
(20)
Аналогично из уравнения (18) получаем

(21)
так как
(22)
Из уравнений (21) и (22) находим
(23)

Уравнения (20) и (23) дают оценку точности коэффициентов, определенных по уравнениям (8) и (9).

Заметим, что коэффициенты a и b коррелированы. Путем простых преобразований находим их корреляционный момент.

Отсюда находим

0,072 при x=1 и 6,

0,041 при x=3,5.

Литература

Шор. Я. Б. Статистические методы анализа и контроля качества и надежности. М.:Госэнергоиздат, 1962, с. 552, С. 92-98.

Настоящая книга предназначается для широкого круга инженеров (научно-исследовательских институтов, конструкторских бюро, полигонов и заводов), занимающихся определением качества и надежности радиоэлектронной аппаратуры и других массовых изделий промышленности (машиностроения, приборостроения, артиллерийской и т.п.).

В книге дается приложение методов математической статистики к вопросам обработки и оценки результатов испытаний, при которых определяются качество и надежность испытываемых изделий. Для удобства читателей приводятся необходимые сведения из математической статистики, а также большое число вспомогательных математических таблиц, облегчающих проведение необходимых расчетов.

Изложение иллюстрируется большим числом примеров, взятых из области радиоэлектроники и артиллерийской техники.